34 research outputs found
Recommended from our members
Detection of Single-Molecule Optical Absorption at Room Temperature and Mechanistic Study of Transcriptional Bursting
Advances in optical imaging techniques have allowed quantitative studies of many biological systems. This dissertation elaborates on our efforts in both developing novel imaging modalities based on detection of optical absorption and applying high-sensitivity fluorescence microscopy to the study of biology.Chemistry and Chemical Biolog
LETTERS Imaging chromophores with undetectable fluorescence by stimulated emission microscopy
Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging 1,2 . However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay The phenomenon of stimulated emission was first described by Einstein in 1917 (ref. 4). An atom or molecule in its excited state can be stimulated down to the ground state by an incident light field, resulting in the creation of a new coherent photon identical to those in the original incident field. This process only occurs when the frequency of the incident field matches the transition energy. Stimulated emission was later used as a fundamental principle for light amplification in the laser 5 . The depopulation aspect of stimulated emission has been used for population dumping from excited states 6 , super-resolution fluorescence microscopy 7 , and fluorescence lifetime imaging 8 . Here we use the light-amplification aspect of stimulated emission as a contrast mechanism for highly sensitive imaging of chromophores that have undetectable fluorescence. Such chromophores have very short-lived excited states with much faster non-radiative decay rates than their spontaneous emission rates. As a result, their feeble fluorescence is overwhelmed by backgrounds, such as stray light, solvent Raman scattering, and detector dark counts. Our solution to this problem is to conduct a dual-beam experiment to interrogate the short-lived excited state by stimulated emission, which can compete with the non-radiative decay under a strong enough stimulating field Considering the optical excitation at frequency v 01 where N 0 is the number of molecules in the ground state. For a single chromophore, DI E /I E is of the order of 10 27 . Such small attenuation cannot be detected by conventional absorption microscopy. We note that single-molecule absorption was previously achieved in cryogenic temperatures using a frequency-modulation method 10 , which is, however, difficult to implement at room temperature because of the broad molecular absorption linewidth. Moreover, absorption measurement is often complicated by scattering when imaging biological specimens. Instead of detecting direct absorption, here we detect the stimulated emission followed by the excitation of the molecule. According to Einstein 4 , the molecular cross-section s stim for stimulated emission is comparable to s abs , because of microscopic reversibility. Unlike the absorption that results in attenuation, the stimulation beam will experience an intensity gain after interacting with the molecules
Recommended from our members
Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection
The current COVID-19 pandemic presents a serious public health crisis, and a better understanding of the scope and spread of the virus would be aided by more widespread testing. Nucleic-acid-based tests currently offer the most sensitive and early detection of COVID-19. However, the “gold standard” test pioneered by the U.S. Centers for Disease Control and Prevention takes several hours to complete and requires extensive human labor, materials such as RNA extraction kits that could become in short supply, and relatively scarce qPCR machines. It is clear that a huge effort needs to be made to scale up current COVID-19 testing by orders of magnitude. There is thus a pressing need to evaluate alternative protocols, reagents, and approaches to allow nucleic-acid testing to continue in the face of these potential shortages. There has been a tremendous explosion in the number of papers written within the first weeks of the pandemic evaluating potential advances, comparable reagents, and alternatives to the “gold-standard” CDC RT-PCR test. Here we present a collection of these recent advances in COVID-19 nucleic acid testing, including both peer-reviewed and preprint articles. Due to the rapid developments during this crisis, we have included as many publications as possible, but many of the cited sources have not yet been peer-reviewed, so we urge researchers to further validate results in their own laboratories. We hope that this review can urgently consolidate and disseminate information to aid researchers in designing and implementing optimized COVID-19 testing protocols to increase the availability, accuracy, and speed of widespread COVID-19 testing
Recommended from our members
Probing Allostery through DNA
Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complex's free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which—together with molecular dynamics simulations—suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factor's affinity near nucleosomes.Chemistry and Chemical Biolog
Recommended from our members
Imaging dynamic and selective low-complexity domain interactions that control gene transcription
INTRODUCTION. DNA binding transcription factors (TFs) are quintessential regulators of eukaryotic gene expression. Early studies of TFs revealed their well-structured DNA binding domains (DBDs) and identified functionally critical activation domains (ADs) required for transcription. It later became evident that many ADs contain intrinsically disordered low-complexity sequence domains (LCDs), but how LCDs activate transcription has remained unclear. Although it is known that transcriptional activation by LCDs requires selective interaction with binding partners, it has been challenging to directly measure selective LCD-LCD recognition in vivo and unravel its mechanism of action.
RATIONALE. Traditional biochemical reconstitution and genetics studies have identified most of the molecular players central to transcription regulation. However, the mechanism by which weak, dynamic protein-protein interactions drive gene activation in living cells has remained unknown. Advances in live-cell single-molecule imaging have opened a new frontier for studying transcription in vivo. In this study, we used synthetic LacO (Lac operator) arrays as well as endogenous GGAA microsatellite loci to study LCD-LCD interactions of TFs such as EWS/FLI1, TAF15, and Sp1 in live cells. To probe the dynamic behavior of TF LCDs at target genomic loci, we have combined CRISPR-Cas9 genome editing, mutagenesis, gene activation, cell transformation assays, and various high-resolution imaging approaches including fluorescence correlation spectroscopy, fluorescence recovery after photobleaching, lattice light-sheet microscopy, three-dimensional DNA fluorescence in situ hybridization, and live-cell single-particle tracking.
RESULTS. Live-cell single-molecule imaging revealed that TF LCDs interact to form local high-concentration hubs at both synthetic DNA arrays and endogenous genomic loci. TF LCD hubs stabilize DNA binding, recruit RNA polymerase II (RNA Pol II), and activate transcription. LCD-LCD interactions within hubs are highly dynamic (seconds to minutes), selective for binding partners, and differentially sensitive to disruption by hexanediols. These findings suggest that under physiological conditions, rapid, reversible, and selective multivalent LCD-LCD interactions occur between TFs and the RNA Pol II machinery to activate transcription. We observed formation of functional TF LCD hubs at a wide range of intranuclear TF concentrations. Although we detected apparent liquid-liquid phase separation with gross overexpression of LCDs, transcriptionally competent TF LCD hubs were observed at physiological TF levels at endogenous chromosomal loci in the absence of detectable phase separation. In addition, mutagenesis, gene expression, and cell transformation assays in Ewing’s sarcoma cells revealed a functional link between LCD-LCD interactions, transactivation capacity, and oncogenic potential.
CONCLUSION. The use of various imaging methods in live cells powerfully complements in vitro studies and provides new insights into the nature of LCD interactions and their role in gene regulation. We propose that transactivation domains function by forming local high-concentration hubs of TFs via dynamic, multivalent, and specific LCD-LCD interactions. It also seems likely that weak, dynamic, and transient contacts between TFs play a role in disease-causing dysregulation of gene expression (i.e., EWS/FLI1 in Ewing’s sarcoma), suggesting that LCD-LCD interactions may represent a new class of viable drug targets. Although we examined a small subset of TF LCDs, the principles uncovered regarding the dynamics and mechanisms driving LCD-LCD interactions may be applicable to other classes of proteins and biomolecular interactions occurring in many cell types
The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.
The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere
Imaging Chromophores With Undetectable Fluorescence by Stimulated Emission Microscopy
Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.Chemistry and Chemical Biolog