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SUMMARY

Transcription of highly expressed genes has been
shown to occur in stochastic bursts. But the origin
of such ubiquitous phenomenon has not been
understood. Here, we present the mechanism in
bacteria. We developed a high-throughput, in vitro,
single-molecule assay to follow transcription on
individual DNA templates in real time. We showed
that positive supercoiling buildup on a DNA seg-
ment by transcription slows down transcription
elongation and eventually stops transcription initia-
tion. Transcription can be resumed upon gyrase
binding to the DNA segment. Furthermore, using
single-cell mRNA counting fluorescence in situ hy-
bridization (FISH), we found that duty cycles of
transcriptional bursting depend on the intracellular
gyrase concentration. Together, these findings
prove that transcriptional bursting of highly ex-
pressed genes in bacteria is primarily caused by
reversible gyrase dissociation from and rebinding
to a DNA segment, changing the supercoiling level
of the segment.

INTRODUCTION

Essential for all cell functions, transcription, the synthesis of

mRNAs from DNA carried out by RNA polymerase (RNApol), is

the first step in gene expression. Many recent experiments

have shown the general phenomenon that transcription of

highly expressed genes occurs in stochastic bursts in bacteria

(Golding et al., 2005; So et al., 2011; Taniguchi et al., 2010;

Zong et al., 2010) and eukaryotic cells (Suter et al., 2011). Amajor

source of gene expression noise, transcriptional bursting results

in cellular diversity of an isogenic population, possibly enhancing

survival of the population in the face of environmental uncertainty

(Kussell and Leibler, 2005; Thattai and van Oudenaarden, 2004;

Wolf et al., 2005). Golding and coworkers directly observed tran-

scriptional bursting in real time by using MS2 loops to monitor

mRNA production in E. coli (Golding et al., 2005). Our group re-

ported a high-throughput, single-molecule fluorescence in situ

hybridization (FISH) assay to measure the cellular copy number

distribution of a particular mRNA for a large population of

isogenic E. coli cells (Taniguchi et al., 2010). When mRNAs are

generated with a constant flux, one expects a Poisson distribu-

tion of mRNAs across the population. Bursting transcription

would lead to non-Poissonian distributions. For all the highly

expressed E. coli genes, we found that the distributions are not

Poissonian, with the Fano factor (variance divided by the mean

of a given distribution) larger than one. This indicates the ubiquity

of transcriptional bursting in bacteria.

However, the origin of bacterial transcriptional bursting is still

unknown. Its stochasticity implies it is a single-molecule

behavior: there is only one copy of the gene in the cell. Its univer-

sality implies that it cannot be attributed to a specific gene or

protein factor. Rather, it must originate from a fundamental and

general mechanism pertinent to the chromosomal DNA structure

and its influence on transcription regulation.

It has been shown that E. coli chromosomal DNA is segre-

gated to �400 topologically constrained loops with an average

size of 10,000 base pairs (Hardy and Cozzarelli, 2005; Postow

et al., 2004). Recent work discussed that E. coli nucleoid-asso-

ciated proteins such as H-NS and Fis can cause formation of

DNA loops based on both chromosome conformation capture

and superresolution optical imaging experiments (Wang et al.,

2011). Such chromosome structure provides us a clue to explain

the transcriptional bursting phenomenon (Figure 1). In such a

DNA loop, transcription generates positive supercoiling ahead

of the RNApol and negative supercoiling behind the RNApol

(Deng et al., 2004; Liu and Wang, 1987; Samul and Leng,

2007; Tsao et al., 1989; Wu et al., 1988). There exist two major

topoisomerases in E. coli cells, gyrase and topoisomerase I

(Topo I), which release positive and negative supercoiling,

respectively (Drlica, 1992). It is known that negative supercoiling

formed during transcription elongation is rapidly removed by

Topo I (Cheng et al., 2003). This is necessary because accu-

mulation of negative supercoiling could lead to the formation

of detrimental R loops, an RNA-DNA hybrid (Drolet, 2006). The

activity of gyrase, on the other hand, is not as sufficient to

keep up with transcription (Guptasarma, 1996), leading to posi-

tive supercoiling accumulation on the DNA loops containing

highly transcribed operons (El Hanafi and Bossi, 2000).
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It has been found that there are �500 gyrase molecules per

E. coli cell (Baker et al., 1987; Higgins et al., 1978; Liu and

Wang, 1987), which happens to be roughly the number of topo-

logically constrained DNA loops per chromosome. On average,

there is one gyrase molecule per DNA loop. When a gyrase

molecule reacts on the DNA loop, positive supercoiling is

released, and RNApol can keep transcribing the gene (‘‘on’’

state; Figure 1A). When the gyrase dissociates from the loop,

positive supercoiling is built up by transcription, possibly slow-

ing down transcription elongation and stopping transcription

initiation (‘‘off’’ state; Figure 1B).

In this study, through a series of in vitro single-molecule and

live-cell experiments, we prove that transcriptional bursting of

highly expressed genes in bacteria is primarily caused by gyrase

dissociation from and reversible binding to a DNA segment or a

chromosomal loop, which changes the supercoiling level of the

DNA segment.

RESULTS

An In Vitro, Single-Molecule Assay Allows Real-Time
Monitoring of Transcription on Individual DNA
Templates
We developed an in vitro, single-molecule assay to monitor re-

petitive stochastic transcription events in real time on individual

DNA templates with controlled supercoiling levels (Figure 2A).

We used a nucleic acid stain, SYTO RNASelect (Life Technolo-

gies), which is nonfluorescent at 530 nm but becomes fluores-

cent upon binding to RNA (Figure 2B). It has been used to detect

RNA in the presence of DNA (Kannemeier et al., 2007). An argon

laser line at 488 nm was used to excite SYTO RNASelect in

a total internal reflection fluorescence (TIRF) microscope. We

collected fluorescence at 530 nm and recorded time-lapse

movies with a charge-coupled device (CCD) camera. In the

presence of the dye, a single nascent mRNA becomes visible,

and its fluorescence intensity increases with the mRNA length.

Therefore, we were able to track transcription elongation

in real time as the nascent mRNA being produced on a sur-

face-tethered DNA template. Transcription activities on up to

hundreds of templates in one field of view can be monitored

simultaneously.

As a control, we examined the effect of SYTO RNASelect on

the activities of enzymes involved in our system, including T7

RNApol, E. coli RNApol, E. coli gyrase, and E. coli Topo I.

None of them were found to be affected by the stain (Figures

S1A–S1H available online). With sufficiently low laser power

and the presence of a fresh oxygen scavenger system, photo-

bleaching of the dye and photocleavage of nucleic acids were

negligible (Figure S2).

In our single-molecule assay, DNA templates containing a pro-

moter were tethered on the passivated surface of the flow cell

through biotin-streptavidin linkage. After we flowed RNApol

and nucleoside triphosphates (NTPs) into the flow cell, the fluo-

rescence intensity of many spots in the field of view linearly

ramped up due to transcription elongation, followed by abrupt

disappearance upon transcription termination (Figure 2C).

‘‘Blinking’’ of fluorescence occurred when multiple transcripts

were produced. As a control, no fluorescence intensity increase

was observed under any of the following conditions: (1) no

RNApol in the solution, (2) no NTPs in the solution, and (3) no pro-

moter in the DNA template. Full-length transcripts (>12 kb) were

generated as confirmed by RNA gel electrophoresis (Figures

S1G–S1I).

By recording fluorescent movies, we were able to measure

intensity versus time for a field of view containing hundreds of

individual DNA templates, from which we could monitor how

individual transcripts were generated (Figure 2D). This in vitro,

single-molecule assay allows us to investigate the effects of

supercoiling on transcription initiation and elongation in a clean

and controlled system.

Positive Supercoiling Buildup by Transcription Slows
Down Transcription Elongation
We examined the effect of positive supercoiling buildup on

transcription elongation in vitro. We designed 12-kb-long

linear DNA templates with T7 or E. coli promoter on the 50 end
and single or multiple biotinylated nucleotides on the 30 end
(Figure 3A).

When the DNA duplex is tethered to the surface with a single

biotin-streptavidin linkage, we found the average T7 transcrip-

tion elongation rate is 53.2 ± 3.4 nt/s (0.3 mM each NTP;

23�C), which is consistent with previously reported rates (Skinner

et al., 2004). This result further proved that transcription was not

affected by the SYTO RNASelect dye. In this case, supercoiling

cannot accumulate because DNA can rotate around its single

linkage to the surface.

On the other hand, DNA with multiple biotinylated nucleotides

cannot rotate around its multiple linkages to the surface. Positive

supercoiling would accumulate downstream of the elongation

complex when spiral of the bulky complex around the DNA is

hindered by the frictional drag on the complex. Interestingly,

we found T7 transcription elongation was slowed down by

38% as positive supercoiling accumulated on the multiple-biotin

DNA template (Figure 3B).

Figure 1. Transcription on Topologically Isolated Chromosomal

DNA Loops

(A) Gyrase releases positive supercoiling generated by transcription on a DNA

loop, and RNApol keeps transcribing the gene.

(B) In the absence of gyrase, active transcription on a DNA loop leads to

positive supercoiling accumulation, which inhibits further transcription on the

particular DNA loop.
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There is a concern that supercoiling might arise from immo-

bilization of the elongation complex to the surface. Special

care was taken to minimize interactions of the elongation com-

plex with the surface in our experiment. Besides, we note our

result is consistent with the earlier in vitro report that the fric-

tional drag on a sizable nascent transcript is enough to lead

to DNA supercoiling (Tsao et al., 1989) even in aqueous solu-

tion and free of surface perturbation. Moreover, the measured

elongation rate with the single linkage did not seem to be

perturbed by the surface interaction with the elongation com-

plex, if any.

Interestingly, the elongation rate on the multiple-biotin tem-

plate was recovered when gyrase was added into the system.

Figure 3C shows the elongation rate as a function of gyrase con-

centration, reaching the value of the single-biotin template at a

saturating gyrase concentration. As a control, we found that

gyrase did not affect the elongation rate on the single-biotin tem-

plate (Figure 3C), indicating that gyrase play no other role than

releasing positive supercoiling.

Similarly, with E. coli RNApol, we found positive supercoiling

accumulation on the multiple-biotin template also slowed

down transcription elongation by 47% (Figure 3D), which is

consistent with a recent report based on mechanical manipula-

tion (Ma et al., 2013).

Dissociation Constant of Gyrase-DNA Complex Is
Determined from Gyrase Concentration Dependence of
Transcription Elongation Rates
Gyrase-DNA binding can be described by two steps (Gore et al.,

2006). First, DNA and gyrase form a complex with limited pro-

tein-DNA-binding interface, which is prone to rapid dissociation.

Second, a chiral DNAwrap is formed around gyrase, which in the

presence of ATP generates negative DNA supercoils. Here, we

discuss the binding stability and kinetics of the DNA wrapping

state, which are relevant to transcription dynamics.

By titrating the elongation rate on the multiple-biotin template

with gyrase (Figure 3C), we determined the gyrase-DNA dissoci-

ation constant Kd from the gyrase concentration at which the in-

crease of the T7 transcription elongation rate reaches half of its

saturation value, that is Kd z 100 nM (Extended Experimental

Procedures). This Kd is larger than previously reported

0.2�0.5 nM (Higgins and Cozzarelli, 1982; Maxwell and Gellert,

1984), where specific gyrase-binding sequences were used

(Morrison and Cozzarelli, 1981; Rau et al., 1987). Strong

gyrase-binding sites comparable to these sequences are

sparsely distributed on the E. coli chromosome with a frequency

of only one per 100 kb (Snyder and Drlica, 1979). The nuoB-N

DNA sequence (�12 kb) we used in our in vitro assay better rep-

resents a chromosomal DNA loop (�10 kb) that binds to gyrase

Figure 2. In Vitro, Single-Molecule Assay to Monitor Real-Time Transcription on Individual DNA Templates Using SYTO RNASelect Stain

(A) Schematic representation of the experimental arrangement (not drawn to scale). In the presence of 250 nM SYTO RNASelect, nascent RNAs are fluorescent

under TIRF excitation at 488 nm. With an excitation power density of 0.22 W/cm2 and an image acquisition time of 5 s, a transcript of 2,300 nucleotides yields a

signal-to-noise ratio of 1.

(B) Fluorescence emission spectra of SYTO RNASelect solution under 488 nm excitation. The dye selectively stains RNA and emits fluorescence with a peak at

530 nm. In the absence of nucleic acids, the dye is not fluorescent at 530 nm. a.u., arbitrary units.

(C) Time-lapse images of 1.1 3 1.1 mm sub-field of view to monitor T7 transcription on one 12-kb-long template.

(D) Intensity-versus-time trajectory of the DNA template shown in (C). Full transcripts are produced repetitively on the template, with transcription elongation time

T1 = 500 s and T2 = 300 s, respectively.

See also Figures S1 and S2.
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at multiple weak binding sites (Franco and Drlica, 1988; Reece

and Maxwell, 1991).

Positive Supercoiling Buildup by Transcription
Essentially Stops Transcription Initiation
Next, we examined the effect of positive supercoiling on tran-

scription initiation. In order to mimic topologically isolated DNA

loops in the bacterial chromosome, we designed a circular tem-

plate (Figure 4A) and tethered it to the surface with multiple

biotin-streptavidin linkages. The circular template consists of a

T7 or E. coli promoter, a 12-kb-long transcribing sequence,

and a T7 or E. coli terminator. Due to the low circularization effi-

ciency, a significant fraction of the purified DNAs remained to be

linear, which are also tethered on the flow cell surface and tran-

scribed.We picked the circular templates for analysis by staining

the DNAmolecules with SYTOXOrange and imaging them under

flow after recording transcription movies (Figure S3).

For a single template under steady-state condition, transcrip-

tion initiation rate is the number of initiation events over a fixed

period of time (frequency of ‘‘spikes’’ in the intensity trajectory

from a template; Figure S4A). According to the ergodic principle,

the initiation rate is the sum of initiated events from a population

of templates at a specific time point. We measured the total

intensity of the circular templates, which is proportional to the

initiation rate.

We examined the first steady-state condition, in which T7

transcription occurs on the circular templates in the absence of

Topo I and gyrase. A bulky elongation complex generates

positive supercoiling ahead of it and negative supercoiling

behind it, which annihilate each other when the elongation

complex dissociates from the template upon transcription termi-

nation (Figure 4A). We found the initiation rate was indeed con-

stant over time because of repetitive annihilation of supercoiling

(Figure 4B).

We then examined the second steady-state condition, in

which T7 transcription occurs on the circular templates in

the presence of both Topo I and gyrase (Figure 4C). Because

both positive and negative supercoiling on the DNA template

is continuously removed, the initiation rate remained constant

over time under this condition (Figure 4D), which is the

same as that in the first steady-state condition (Figures S4C

and S4D).

We now examine how positive supercoiling buildup would

hinder transcription initiation. After introduction of Topo I, nega-

tive supercoiling is rapidly removed, and positive supercoiling is

expected to accumulate on the circular template as multiple

transcripts are made (Figure 4E). Indeed, we observed the

initiation rate decreased over time (Figure 4F). Interestingly,

the final intensity has dropped to under 20% of its initial value,

indicating that transcription initiation was essentially stopped

by the buildup of positive supercoiling. This final state corre-

sponds to the gene ‘‘off’’ state. We found that it takes approx-

imately nine rounds of T7 transcription to build up sufficient

positive supercoiling that inhibits transcription initiation on a

single template in vitro (Figure S4B and Extended Experimental

Procedures).

Similar to T7 transcription, we found transcription initiation

rate of E. coli RNApol dropped to �25% after approximately

five transcripts were produced from a circular template of the

same length (12 kb) in the presence of Topo I (Figures 4E, 4G,

and S5; Extended Experimental Procedures). We note that

fewer than five rounds of transcription might be sufficient to

Figure 3. Supercoiling Dependence of

Transcription Elongation Rate

(A) In vitro transcription template design contain-

ing a T7 or T7A1 promoter and a 12 kb transcribing

sequence. The template is anchored to the flow

cell surface via either a single or multiple biotin-

streptavidin linkages.

(B) Histogram of T7 transcription elongation time

on the templates anchored with single (red curve)

or multiple biotin-streptavidin linkages (blue

curve). The average elongation time for the multi-

ple-biotin template is 60% longer.

(C) Titration of T7 transcription elongation rate

(23�C) on the multiple-biotin template (the three

bars on the left) with gyrase concentration. The

elongation rate increases with the gyrase con-

centration till it gets as high as that on the single-

biotin template (the fourth bar). The elongation rate

on the single-biotin template does not change in

the presence of a saturating concentration of

gyrase (the bar on the right).

(D) E. coli transcription elongation rate (37�C) and
T7 transcription elongation rate (23�C) on the

multiple-biotin template are slower than on the

single-biotin template. In (C) and (D), the elonga-

tion rates are averaged from over 300 transcripts

under each condition. The error bars are boot-

strapped confidence intervals (Efron and Tibshir-

ani, 1993).

See also Figures S1 and S2.
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Figure 4. Supercoiling Dependence of Transcription Initiation Rate

(A) Schematic of transcription on a circular template in the absence of topoisomerases. Positive and negative supercoiling annihilate each other after RNApol

completes transcription and dissociates from the template.

(B) Time dependence of T7 transcription initiation rate under the condition of (A).

(C) Schematic of transcription on the circular template in the presence of 41 nM Topo I and 0.1 mM gyrase (same as state 1 in Figure 7A).

(D) Time dependence of T7 transcription initiation rate under the condition of (C). The arrow shows the timewhen the topoisomeraseswere added into the system.

(E) Schematic of transcription on the circular template in the presence of 41 nM Topo I and absence of gyrase. Positive supercoiling is built up as transcripts are

produced.

(F) Time dependence of T7 transcription initiation rate under the condition of (E). (B), (D), and (F) are the total intensity versus time from 160 circular templates

under respective conditions normalized to the same fluorescence intensity.

(G) Time dependence of E. coli transcription initiation rate in the presence of 62 nM Topo I and absence of gyrase. This is the intensity averaged from 106 circular

templates at each time point normalized to that from 209 linear templates (Extended Experimental Procedures).

See also Figures S1, S2, S3, S4, and S5.
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generate the same level of supercoiling in a live cell, where the

environment is more viscous and the elongation complex is

bulkier due to transcription-translation coupling (Lynch and

Wang, 1993).

With regards to why supercoiling stops transcription initia-

tion, earlier magnetic tweezer experiments have shown that

DNA positive supercoiling leads to significantly slower and

less stable formation of E. coli RNApol-promoter open com-

plex (Revyakin et al., 2004). Therefore, we conclude that the ob-

served inhibition of transcription initiation arises from hindered

formation of RNApol-promoter open complex due to positive

supercoiling accumulation.

Gyrase Binding to Positively Supercoiled DNA Restarts
Transcription
We now prove that gyrase binding on the positively super-

coiled DNA restarts transcription. We started with T7 tran-

scription on the circular templates in the presence of Topo I,

generating the gene off state (Figure 5). Upon addition of

gyrase into the system, transcription initiation rate started to

increase and reached a plateau at the initial value of the

relaxed templates (Figure 5B), indicating that transcription

initiation was fully recovered when positive supercoiling was

released by gyrase.

The initiation rate versus time after the introduction of gyrase

can be fitted well with a single exponential rise (Figure 5B),

suggesting a single step is rate limiting for the transition. The

rate constant is determined to be 0.78 3 10�3 s�1, comparable

to the pseudo-first-order gyrase-DNA binding rate constant

�10�3 s�1, which is the product between the bimolecular

binding rate constant kon z 104 M�1 s�1 under our salt

concentration (Higgins and Cozzarelli, 1982) and the gyrase

Figure 5. Transition from Gene Off to On

State

(A) Schematic of transcription on the circular

template first in the presence of 41 nM Topo I only

(same as Figure 4E) and then both 41 nM Topo I

and 0.1 mM gyrase (same as Figure 4C).

(B) Time dependence of T7 transcription initiation

rate (blue) under the condition of (A). This is the

intensity averaged from 160 circular templates at

each time point normalized to that from 120 linear

templates. Gyrase was added into the system at

T = 0, when transcription initiation was essentially

stopped by positive supercoiling accumulation.

The trajectory after T = 0 is fitted with a single

exponential function (magenta).

See also Figures S1, S2, and S3.

concentration used in our in vitro assay

0.1 mM. Such consistency suggests that

gyrase binding to the DNA template is

the rate-limiting step to restart transcrip-

tion in vitro.

The Kd and kon of gyrase-DNA binding

determined in vitro allow us to estimate

the time it takes gyrase to dissociate

from and rebind to a specific chromo-

somal DNA loop in an E. coli cell. Because there are compara-

ble numbers of gyrase molecules and chromosomal DNA loops

per E. coli cell, many gyrase molecules are trapped on DNA

loops. According to Kd, the intracellular concentration of un-

bound gyrase [G] is �0.3 mM (Extended Experimental Proce-

dures). Because kon of gyrase-DNA binding is �104 M�1 s�1

as determined in vitro, the in vivo pseudo-first-order rate con-

stant for gyrase-DNA binding kon,[G] is �3 3 10�3 s�1. There-

fore, the average gyrase rebinding time is 1/(kon,[G]) z 6 min.

Because the dissociation rate constant of gyrase-DNA complex

is koff = Kd,kon z 10�3 s�1, the average gyrase dissociation

time is 1/koff z 17 min. The gyrase rebinding and dissociation

time is in the same order of magnitude with the off and on pe-

riods of transcriptional bursting observed in live E. coli cells

(Golding et al., 2005).

In summary, the in vitro experiments demonstrated that

DNA positive supercoiling generated by transcription slows

down both transcription initiation and elongation and eventually

stops initiation. Inhibited transcription initiation and elongation

can be recovered upon gyrase binding to DNA. Therefore,

accumulation and removal of positive supercoiling of a chro-

mosomal DNA loop containing a highly expressed gene can

switch the gene off and on. Next, we performed live-cell experi-

ments to further support this mechanism.

Live-Cell Experiments Confirm that Positive
Supercoiling Buildup Slows Down Transcription
Elongation
We examined whether chromosomal supercoiling level affects

transcription elongation in live E. coli cells. Using quantitative

RT-PCR, we measured the steady-state abundance of different

segments of fully induced lac operon mRNA under gyrase

Cell 158, 314–326, July 17, 2014 ª2014 Elsevier Inc. 319



inhibition by novobiocin or norfloxacin. No difference in the

abundance was observed throughout the transcript (Figure 6A).

This result suggests that the elongation complex does not stop

or dissociate from the DNA template in the middle of one round

of transcription more often when the DNA template is more posi-

tively supercoiled. We note that an early in vitro experiment

found that stable norfloxacin-gyrase-DNA complex could form

at a strong gyrase-binding site and block transcription elonga-

tion (Willmott et al., 1994). This effect was not observed in our

live-cell assay, likely due to a low intracellular norfloxacin con-

centration and the lack of strong gyrase-binding sites in the

probed region.

Next, we measured transcription elongation rate in live E. coli

cells using transcription initiation inhibitor rifampicin (Epshtein

and Nudler, 2003) and quantitative RT-PCR (H. Chen, K. Shiro-

guchi, H.G., and X.S.X., unpublished data). We added rifam-

picin to the cell culture at time zero and measured the mRNA

abundance in multiple regions (Figure 6B) along the transcript

at multiple time points afterward. Whereas the mRNA abun-

dance at the 50 end decreased immediately upon the addition

of rifampicin, the mRNA abundance downstream started to

decrease after a time delay (Figure 6C). The distance between

the two probes on the transcript divided by the time delay

was the elongation rate. Gyrase inhibition was achieved by

norfloxacin treatment where most cells were viable through

the 14-min-long rifampicin assay (Figure S6A). We found that

the elongation rate of fully induced lac operon decreased by

46% upon gyrase inhibition (Figure 6D), similar to the result pre-

viously reported by Higgins group on Salmonella enterica

(Rovinskiy et al., 2012).

A Two-State Model Describes Transcriptional Bursting
Transcriptional bursting has been described with a two-state

model, but the origin of the two states was not understood

(Golding et al., 2005; Munsky et al., 2012; So et al., 2011).

We now understand the mechanism of bacterial transcrip-

tional bursting (Figure 7A): the gene stochastically switches

between on and off states due to release and accumulation

of positive supercoiling. The on state (state 1) generates

mRNAs with an average transcription rate k1, and the mRNAs

degrade with rate constant g. The off state (state 2) does not

generate any mRNA. The interconversion rate constants

between the two states are a and b. a is the gene on-to-off

transition rate constant due to gyrase dissociation from

the DNA loop and positive supercoiling accumulation. For

simplicity, we assume positive supercoiling accumulation

is fast and gyrase dissociation is rate limiting. b corresponds

to the pseudo-first-order rate constant of gyrase-DNA binding,

which is also rate limiting in the gene off-to-on transition

and proportional to the effective intracellular gyrase concen-

tration. The lower the effective gyrase concentration is, the

longer the gene stays in the off state and the smaller the

on/off duty cycle ratio (b/a), which should result in a higher

extent of bursting reflected by a larger Fano factor and a

larger fraction of cells that contain zero copy of mRNA at a

given time point.

Figure 6. Transcription Processivity and

Elongation Rate upon Gyrase Inhibition in

Live E. coli Cells

(A) Quantitative RT-PCR measurement of the

abundance of different parts of lac operon mRNA

under fully induced condition. x axis: the position

of probing sites along lac operon; y axis: mRNA

abundance. Black squares: gyrase partial inhibi-

tion by 50 ng/ml novobiocin; red dots: gyrase

complete inhibition by 10 ng/ml norfloxacin. The

result indicates nonstop transcription elongation

upon positive supercoiling buildup on the DNA.

The abundance of each mRNA part is normalized

to its abundance under wild-type condition, which

is plotted as the flat curve.

(B) Seven sites on lac operon mRNA that were

probed in the measurement of transcription elon-

gation rate.

(C) Five hundred nanograms per microliter rifam-

picin was added into the cell culture at time zero to

stop transcription initiation, but not elongation.

The abundance of different positions on the lac

operon mRNA was probed by quantitative RT-

PCR at multiple time points.

(D) Transcription elongation rate decreased upon

gyrase inhibition by 10 ng/ml norfloxacin in live

E. coli cells. The error bars are SDs of the elon-

gation rates obtained by repeating the measure-

ments (n = 3) under each condition.

See also Figure S6.

320 Cell 158, 314–326, July 17, 2014 ª2014 Elsevier Inc.



Transcription bursts of highly transcribed genes are reflected

by the non-Poissonian mRNA copy number distribution.

Under the condition that a and b are significantly smaller

than k1 and g as previously observed (Golding et al., 2005),

the steady-state mRNA copy number distribution for a popula-

tion of cells is bimodal (Munsky et al., 2012) and can be

approximated with a ‘‘Poisson with zero spike’’ distribution

(Equation 1). Based on the two-state model, the Fano factor

(F) can be derived as Equation 2 (Extended Experimental

Procedures).

Figure 7. Dependence of On/Off Duty Cycle Ratio, b/a, on Effective Intracellular Gyrase Concentration

(A) Kinetic scheme of the two-state model with relevant rate constants.

(B) Fitting of cellular ThrS mRNA copy number distribution with Poisson with zero spike distribution.

(C) Schematics of interactions between effective gyrase concentration and DNA supercoiling generated by transcription under different conditions. Upon

gyrase inhibition, positive supercoiling accumulates on the chromosomal DNA loop to a higher extent than wild-type. Gyrase overexpression or SGS

insertion is the opposite. In a plasmid-borne expression module, positive and negative supercoiling annihilate each other due to the lack of topological

barriers.

(D) b/a of fully induced lac operon decreases upon gyrase partial inhibition by 50 ng/ml novobiocin treatment and increases upon gyrase overexpression, SGS

insertion, and in a plasmid-borne system.

(E) b/a of fully induced lac operon and other 18 highly transcribed E. coli genes. b/a of all the 19 genes decrease upon gyrase partial inhibition by 50 ng/ml

novobiocin treatment. In (D) and (E), the error bars are bootstrapped confidence intervals.

See also Figures S6, S7, and Table S1.
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F = 1+
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ða+ bÞg: (Equation 2)

We note these results hold only under the condition that gyrase

dissociation and rebinding are rate limiting, longer than the

time scales of positive supercoiling accumulation and release.

Although this is a simplified model, it captures the origin of tran-

scriptional bursting, i.e., gyrase dissociation, and establishes

the gyrase concentration dependence of b, which can now be

subject to in vivo experimental tests.

The Dependence of Transcriptional Bursting on
Effective Gyrase Concentration Revealed by
Single-Molecule mRNA FISH Assay
We now experimentally verify this model by measuring the

steady-state mRNA copy number distribution in a population

of isogenic E. coli cells under gyrase inhibition and overexpres-

sion conditions. We performed mRNA FISH assay with single-

molecule sensitivity, using a single Atto 594-labeled 20-oligomer

nucleotide probing the yfp sequence in an E. coli strain with the

target gene fused to yfp sequence endogenously. By measuring

the intensity of each fluorescent spot and counting the number of

spots per cell, we determined cellular mRNA copy number for

thousands of E. coli cells. The efficiency of our single-molecule

mRNA FISH assay is �90% (Taniguchi et al., 2010).

We measured the cellular mRNA copy number distribution of

the fully induced lac operon and 18 highly transcribed genes

from the YFP library that our group has constructed (Taniguchi

et al., 2010). Partial gyrase inhibition was achieved by novobiocin

treatment at low concentration without affecting normal bacterial

growth and morphology (Figure S6B). We found that the cellular

mRNA copy number distribution can be fittedwell by the Poisson

with zero spike distribution for the 19 genes with excellent coef-

ficients of determination (Figure 7B; Table S1). The fitting allows

estimation of the on/off duty cycle ratio of transcriptional

bursting (b/a), with an error bar obtained by the bootstrapping

method (Efron and Tibshirani, 1993).

For fully induced lac operon, b/a was 1.20 for wild-type,

decreased to 0.73 upon gyrase inhibition, increased to 2.16

upon gyrase overexpression, and increased to 3.83 when a

strong gyrase site (SGS) was inserted next to the lac operon (Fig-

ures 7C and 7D). This result indicates that transcriptional

bursting is sensitively dependent on the availability of gyrase

to remove positive supercoiling accumulated during active

transcription.

If lac operon is on a plasmid that lacks topological constraint,

positive and negative supercoiling generated by transcription

could diffuse along the circular DNA in opposite directions and

annihilate each other (Figure 7C). As a critical control, a

plasmid-borne system in E. coli indeed showed an even higher

b/a than that of gyrase overexpression (Figure 7D).

One would expect b/a to be infinitely large if the gene is always

on in the complete absence of positive supercoiling accumula-

tion. Yet it was not the case for the plasmid-borne system

because there could be weak and transient topological barriers

on the plasmid DNA due to transient protein binding (Leng

et al., 2011). To confirm this point, we performed control exper-

iments on the same plasmid-borne system under gyrase inhibi-

tion and overexpression conditions. We found that b/a changed

in the same direction as the chromosomal gene but to a smaller

extent. Under the same conditions, b/a of the plasmid-borne

system was always higher than the chromosomal counterpart,

because the plasmid has much lower topological barriers and

thus more efficient removal of positive supercoiling during active

transcription (Figure S6C).

Intriguingly, similar to the scenario of fully induced lac operon,

all the other 18 genes showed a decreased b/a (Figure 7E) upon

gyrase inhibition. In addition, most of the genes showed an

increased Fano factor (Figure S7A) and an increased fraction

of cells containing zero copy of mRNA (Figure S7B) upon gyrase

inhibition. These findings are consistent with the prediction

based on our model and demonstrate the ubiquitous effect of

gyrase concentration on transcriptional bursting.

DISCUSSION

Mechanism of Transcriptional Bursting under Induced
Condition Revealed
Pertinent to the fact that there is only one (or two) copyof the gene

in acell, geneexpression is stochastic. In recent years, stochastic

gene expression has stimulated wide interest (Blake et al., 2003;

Elowitz and Leibler, 2000; Elowitz et al., 2002; Ozbudak et al.,

2002; Pedraza and Paulsson, 2008). Such stochasticity, or noise,

causes phenotypic variability among genetically identical cells

and organisms despite identical histories of environmental expo-

sure (Choi et al., 2008; Maamar et al., 2007) and arises from the

fact that DNA, mRNA, and gene regulatory proteins can be pre-

sent and active at only a few copies per cell. Due to the small

copy numbers and the fact that stochastic gene expression

cannot be synchronized among different cells, quantitative

studies of gene expression at the single-cell level necessitate

single-molecule sensitivity for mRNA and protein detection.

The stochastic gene expression dynamics of repressed genes

have already been well studied and understood to date (Li and

Xie, 2011). For highly expressed genes in both prokaryotic and

eukaryotic organisms, bursting transcription has been demon-

strated by a number of techniques, including single-molecule

FISH assay that counts cellular mRNA copy number (Raj et al.,

2006, 2010; Taniguchi et al., 2010; Zong et al., 2010), MS2 or

PP7 technique that visualizes single mRNA production in real

time (Chubb et al., 2006; Golding et al., 2005; Hocine et al.,

2013; Larson et al., 2011; Lionnet et al., 2011; Muramoto et al.,

2012), and fluorescent protein (Singh et al., 2010) or luciferase

(Suter et al., 2011) as gene expression reporter in live cells.

Nevertheless, the mechanism of this ubiquitous phenomenon

under induced condition is not understood.

We note that the transcriptional bursting phenomenon studied

in this paper is different from transcriptional pausing in prokary-

otic and eukaryotic cells (Core et al., 2008; Landick, 2006;
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Weixlbaumer et al., 2013), which has been studied by recent

single-molecule manipulation (Davenport et al., 2000; Herbert

et al., 2006; Hodges et al., 2009; Ma et al., 2013; Shundrovsky

et al., 2004) and RNA-sequencing experiments (Churchman

and Weissman, 2011; Core et al., 2008). Whereas pausing de-

scribes intermittent elongation of a transcript, bursting describes

discontinuous production of many transcripts over a much

longer time scale and involves inhibition of both transcription

initiation and elongation.

We have revealed the origin of stochastic transcriptional

bursts in bacteria under induced conditions by conducting a

series of in vitro and live-cell experiments and demonstrated

that reversible switching between different chromosomal super-

coiling levels via gyrase dissociation fromand rebinding to aDNA

loop gives rise to bursting transcription. We note this is a funda-

mental mechanism pertinent to the chromosome structure and

should be applicable to all the highly expressed genes in pro-

karyotic cells and even eukaryotic cells. However, the situation

of eukaryotic cells is more complex than that of bacteria due to

more complicated transcription regulation and the existence of

nucleosomes (Raser and O’Shea, 2004).

A Role of DNA Supercoiling in Gene Expression
Regulation
The interaction between DNA supercoiling and gene expression

in bacteria has been investigated for decades. Our knowledge

comes primarily from ensemble studies on the relationship be-

tween the global DNA supercoiling level and the gene expression

level. On one hand, bacterial DNA supercoiling level affects the

expression of a few E. coli genes called supercoiling-sensitive

genes (Peter et al., 2004) as well as transcription elongation

rate (Rovinskiy et al., 2012) due to a combined effect of torsional

and bending stress sustained by the supercoiled DNA at the

transcription site (Lionberger and Meyhöfer, 2010; ten Hegg-

eler-Bordier et al., 1992). On the other hand, local DNA super-

coiling level is generated by transcription, according to the

‘‘twin-domain model’’ developed by Wang and Liu groups in

late 1980s (Deng et al., 2005; Leng et al., 2011; Lim et al.,

2003; Liu and Wang, 1987; Samul and Leng, 2007; Tsao et al.,

1989;Wu et al., 1988). Here, we report a role of DNA supercoiling

in gene expression regulation that can only be revealed by sin-

gle-molecule and single-cell approaches: transient DNA super-

coiling generated locally during active transcription gives rise

to transcriptional bursting, which is a major source of gene

expression noise that causes cell-to-cell variability in an isogenic

population. Although earlier work proposed DNA supercoiling

can be involved in bursting transcription (Mitarai et al., 2008;

So et al., 2011), we have experimentally proved that supercoiling

dynamics is the primary origin of transcriptional bursting.

In Vitro, Single-Molecule Transcription Assay
In order to investigate the effect of positive supercoiling buildup

on transcription elongation and initiation in a clean and con-

trolled fashion, we developed an in vitro, single-molecule assay

that could monitor real-time transcription on individual DNA

templates. We note our assay is different from other existing

in vitro transcription assays using single-molecule manipulation

(Abbondanzieri et al., 2005; Bai et al., 2006; Billingsley et al.,

2012; Bustamante et al., 2011; Herbert et al., 2008) or single-

molecule fluorescence imaging (Chakraborty et al., 2012; Fried-

man and Gelles, 2012; Kapanidis et al., 2006; Revyakin et al.,

2012; Tang et al., 2009; Zhang et al., 2014). Our assay uses

RNA staining so that the elongation process on templates with

any sequence can be easily monitored for multiple rounds of

transcription on each template. This is a high-throughput mea-

surement because hundreds of templates in one field of view

can be monitored simultaneously. The assay will be generally

useful for studying other questions in transcription, such as

pausing and termination kinetics.

Other Possible Mechanisms of Transcriptional Bursting
The current report proves that stochastic changes of supercoil-

ing level in DNA segments due to gyrase dissociation and rebind-

ing is a main mechanism that gives rise to bursting transcription

of highly expressed genes in bacteria. However, we note there

could be other possible causes of bacterial transcriptional

bursting, such as the change of chromosomal looping structure

due to the dissociation and rebinding of nucleoid-associated

proteins, as well as facilitated transcription reinitiation due to

dynamical gene looping, where an operon DNA places its pro-

moter and terminator in spatial proximity (Hebenstreit, 2013).

Although theymight cause transcription rate fluctuations in addi-

tion to the supercoiling effect that we observed, none of these

alternative mechanisms have been experimentally proved to

switch genes on and off.

EXPERIMENTAL PROCEDURES

In Vitro Single-Molecule Transcription Assay

To measure transcription elongation rates, T7 RNApol (New England Biolabs)

or E. coli RNApol (Epicentre), NTPs, 250 nM SYTO RNASelect, and an oxygen

scavenger systemwere added to transcription buffer. After infusing themixture

into the flow cell containing immobilized DNA templates, a fluorescent movie

was recorded under 488 nm laser excitation at 0.22W/cm2. Imageswere taken

every 20 s for 60–80 min, and the acquisition time of each image was 5 s.

To measure transcription initiation rates, the reaction mixture was the same

as that for elongation rate measurements except that higher concentrations of

RNApol and NTPs were used. The excitation power density was 0.15 W/cm2.

Images were taken every 75 s with 5 s of image acquisition time.

DNA Staining Assay

In order to locate the linear and circular templates in the field of view, 100 nM

SYTOX Orange (Life Technologies) in 50 mM Tris-HCl buffer (pH 8.0) was used

to stain the immobilized DNAs after transcription movies were recorded. Fluo-

rescent movies were recorded under 532 nm laser excitation with a power

density above 4 W/cm2. The image acquisition time was 0.3 s. The imaging

buffer was kept flowing at 8ml/hr by a syringe pump (PhD 2000; Harvard Appa-

ratus) during the movie recording.

Single-Molecule mRNA FISH Assay

The BW25993 E. coli cells were grown in M9 medium with 0.4% glycerol,

amino acids, and vitamins, together with antibiotics and saturating amount

of isopropyl b-D-thiogalactopyranoside (IPTG) if necessary. The cells were

subsequently inoculated 1:500 into the same medium and incubated for

�7 hr at 37�C with 250 rpm shaking till optical density 600 nm (OD600nm)

reached 0.2�0.3. Fifty nanograms per microliter novobiocin (Sigma) was

added into the medium and incubated for another 2 hr before harvest. Two

hours was long enough (several cell cycles) to allow all the cells to enter steady

state and thus minimized potential cell-to-cell variation due to different transi-

tion kinetics in response to the drug treatment.
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The YFP library strains were grown in Luria broth (LB) mediumwith chloram-

phenicol at 30�C. The cells were subsequently inoculated 1:400 into M9

medium with 0.4% glucose, amino acids, and vitamins and incubated for

11 hr at 30�C with 250 rpm shaking till OD600nm reached 0.2�0.3. Fifty nano-

grams per microliter novobiocin was added and incubated for another 2 hr

before harvest.

Single-molecule mRNA FISH assay was performed as previously described

(Taniguchi et al., 2010) using Venus495rmRNA FISH probe covalently linked to

a dye molecule Atto 594 (Sigma-Aldrich). The images were taken under epi-

illumination by a fiber laser at 580 nm and phase contrast illumination by a

halogen lamp.
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