57 research outputs found

    Non-linear Analysis of the Expanding Stage in the UOE Pipe Manufacturing Process

    Get PDF
    In recent years, the increasing demand for energy has pushed oil and gas activities into more remote regions of the sea, which resulted in laying pipelines at depths greater than 2000m where they are vulnerable to collapse failure. Therefore, pipes are required to be manufactured with higher circularity and thicker wall thickness, this introduces a challenge for UOE pipe manufacturers as the process will involve the application of high forces in each forming step to form the plate into a pipe, and this could affect the integrity of equipment and tools such as the mechanical expander die segments. The aim of this paper is to investigate the expansion stage in the UOE pipe manufacturing process using Finite Element Analysis (FEA). Firstly, the stresses encountered by the pipe and mechanical expander dies during the expansion stage were analysed. The study revealed that the expansion stage causes the formation of wave patterns and concavities on the pipe surfaces which results in wall thickness variation. In addition, the study showed that the pipe ovality after the expansion is between (0.034%) and (0.055%). Furthermore, the study revealed that the Von-Mises stresses, the mechanical expander dies experience during the expansion are about (10.26%) lower than the pipeā€™s yield strength. Secondly, the FEA was carried out to investigate the benefit of optimising the mechanical expander dies design on the finished pipe shape. This study showed that reducing the expander die radius by (1%) significantly improves the pipe shape compared to the original expander die size and lowers the stress concentration on the expander dies

    Automating the Optimal Selection Process of Subassembly Sections of a Modular Spreader Beam Used in Lifting Operations

    Get PDF
    Spreader beams used in lifting operations undergo a purely compressive load to spread apart the ends of a sling which enables large payloads to be lifted from a single point, such as a crane hook, without damage. A modular spreader beam can be made using subcomponents of different standard sizes to create a spreader beam of any length, making them more versatile and cost-effective than non-modular spreader beams. However, while the manual calculation and selection of an optimum number of subsections for a single beam is straightforward, the process for the multiple range of spreader beam is very challenging and is labour-intensive in a lifting company. The main aim of this study was to develop an automated system for determining the optimal configuration of the modular spreader beam which leads to increasing the efficiency of the lifting company through saving the associated labour and time costs. The automated system is underpinned by designing an algorithm based on a dynamic programming optimisation search to test every possible configuration and return the optimal configuration. Hence, the main novelty in this study is the development of a computer-based system to automate the selection process of the modular beam’s subsections, which generates an optimal package immediately to create different lengths with the fewest sections needed for a lifting operation. Eventually, the process of generating quotation for clients can be significantly accelerated while the risk of human errors can be also eliminated
    • ā€¦
    corecore