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Abstract  6 
Liquid dropout occurs in gas condensate reservoirs below the dew point pressure around near 7 
wellbore region as a result of depletion from production of such reservoirs. Forecasting 8 
production as well as optimizing future recoveries of gas condensate reservoirs are highly 9 
desirable. This is not possible to achieve without accurate determination of liquid dropout  10 
viscosity (𝜇𝑐) below the dew point. The focus of research in past decades has been on the 11 
development of accurate viscosity prediction models below the dew point pressure to ensure 12 
accurate condensate production forecast. Gas condensate production forecast and 13 
optimisation around this region and condition are complicated due to unique gas condensate 14 
behaviour that violates thermodynamic laws. 15 
Current methods are based on correlation estimation, however the accuracy of these 16 
correlations are less than satisfactory, and root cause is due to the miscapturing of complex 17 
behaviour of gas condensate reservoir near the wellbore region. These motivated the 18 
consideration of modern numerical approaches such as the Least Square Support Vector 19 
Machine (LSSVM) and Artificial Neural Network (ANN) used in this paper. These methods are 20 
considered as more data behaviour oriented, with the capability of capturing the fluid 21 
complexity of gas condensate in such conditions.  22 
In this study viscosity of condensate phase near the wellbore region was modelled using 23 
machine learning techniques including ANN and LSSVM. For this purpose, over 300 viscosity 24 
data sets were collected from published literature and experimental studies worldwide. This 25 
databank includes API gravity, reservoir temperature, solution gas to oil ratio (Rs), specific 26 
gas gravity, fluid compositions and reservoir pressure.  27 
Six well known previously published viscosity correlations refined using least-square approach 28 
to match the experimental data. Qualitative and quantitative error analysis of developed 29 
LSSVM and ANN showed their performance superiority over refined literature correlations. 30 
The new proposed models can be embedded as an extra feature of commercial reservoir 31 
simulation packages for optimization and future recoveries of gas condensate reservoirs.  32 
 33 
Keywords: 34 
Condensate viscosity, Gas condensate, Machine Learning (ML), Least Square Support Vector 35 
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Nomenclature and units  38 
 39 
API              Oil API gravity  40 
ANN            Artificial Neural Network 41 
LSSVM       Least Square Support Vector Machine 42 
ML         Machine Learning 43 
RMSE         Root Mean Square Error  44 
GOR           Gas to oil Ratio (scf/STB) 45 
Rs               Solution gas to oil ratio (scf/STB) 46 
𝜇𝑑                Dead oil viscosity (cp) 47 
𝜇𝑜𝑏         Live oil viscosity (cp) 48 
𝜇𝑐                Condensate viscosity (cp) 49 
HPHT          High pressure high temperature  50 
N                 Number of data points  51 
P                 Reservoir pressure (psia) 52 
T                 Temperature (°F) 53 
cp                Centipoise  54 

1. Introduction  55 
As reservoir pressure reduces in gas condensate to below the dew point due to 56 

production, the liquid evolved from gas phase and creates multi-phase flow near the 57 

wellbore region. Accumulation of the liquid in aforementioned region is increasing with 58 

time and is usually very high in rich gas condensate reservoirs. This phenomenon is 59 

called “liquid banking” and can cause severe productivity declines (Wheaton and 60 

Zhang, 2007). To understand this complex behaviour in depleting gas condensate 61 

reservoirs for forecasting production and optimizing future recoveries viscosity 62 

determination of the condensate liquid below the dew point is essential (Audonnet and 63 

Pádua, 2004; Kashefi et al., 2013).  64 

In fact, inaccurate estimation of condensate liquid viscosity below the dew point has 65 

detrimental effect on cumulative production and can lead to large errors in reservoir 66 

performance. Previous studies show 1% error in reservoir fluid viscosity resulted in a 67 

1% error in cumulative production (Al-Meshari et al., 2007; Whitson et al., 1999; Yang 68 

et al., 2007).  69 

Measurement of condensate viscosity in gas condensate reservoirs is not made in a 70 

routine laboratory test and it may be very difficult to obtain due to unavailability of the 71 

samples, lack of high pressure high temperature (HPHT) facilities, small volume cell 72 
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viscometers and time and cost required for the measurements. Consequently this 73 

makes use of theoretical correlation more attractive (Al-Meshari et al., 2007; Hemmati-74 

Sarapardeh et al., 2014; Whitson et al., 1999).  75 

Depending on the input variables the correlations can be divided to two classes: 1). 76 

semi-empirical models that use reservoir fluid composition, critical temperature, 77 

acentric factor, pour point temperature, molar mass and boiling point. 2). the 78 

correlations which use field data such as reservoir temperature, pressure, API gravity 79 

and solution gas to oil ratio “Rs” (Chew and Connally, 1959; Khan et al., 1987). These 80 

correlations are deployed for three different conditions of under saturated, saturated 81 

and dead oil viscosity.  82 

Condensate liquid viscosity is typically low for depleted gas condensate reservoirs, 83 

ranging from 0.1 to 1cp, in the near wellbore region (Al-Nasser and Al-Marhoun, 2012; 84 

Whitson et al., 1999). The API gravity of condensate reservoirs are between 40 to 85 

60°API with gas to oil ratio (GOR) between 3000 – 150000scf/STB and temperature 86 

between critical temperature (127°C) and cricondentherm temperature (250°C) 87 

(Ahmed, 2010; Whitson et al., 2000).  The above conditions were our constraint in 88 

selecting existing literature viscosity correlations for this study.  89 

Variation of the condensate viscosity with reservoir composition is estimated using the 90 

correlation proposed by Lohrenz et al., (1964). This correlation is the most widely used 91 

viscosity model, especially in many commercial compositional simulators (ECLIPSE, 92 

2014).  Lohrenz et al., (1964), known commonly as LBC, is developed for predicting 93 

viscosity of dense gas mixture based on the original work of Jossi et al., (1962) for 94 

pure substances using corresponding state principle. Prediction performance of LBc 95 

model for viscosity prediction of gas phase in gas condensate reservoirs is reasonable, 96 

while prediction of condensate liquid viscosity by this method is very poor (Yang et al., 97 

2007). Consequently, it is necessary to tune the LBC correlation by adjusting its 98 

coefficients to match the experimental data. This method is selected because it is 99 

taking into account compositional changes based on reduced density, which is 100 

characteristic of gas condensate reservoirs below the dew point (Fevang and Whitson, 101 

1996; Mott, 2003).  102 

Gas-saturated-oil (live oil) viscosity correlations are another alternative in literature 103 

that can be used to determine the condensate oil viscosity. Yang et al., (2007) 104 

suggested to use live oil (𝜇𝑜𝑏) viscosity correlations to predict condensate liquid 105 

viscosity if the measured data is not available. These correlations are function of 106 
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solution gas to oil ratio Rs, reservoir pressure, reservoir temperature, fluid API gravity 107 

and gas specific gravity (𝛾𝐺𝑎𝑠 ). Subsequently these parameters are classed as input 108 

variables for developing our ANN and LSSVM models (Fig. 5). Rs is often the most 109 

significant component of the PVT correlations, which have big influence on the oil 110 

viscosity and should be precisely measured in any selected correlations (Hemmati-111 

Sarapardeh et al., 2014). The solution gas to oil ratio is the amount of gas dissolved 112 

in the oil at any pressure. It increases linearly with pressure and it is a function of 113 

reservoir fluid composition (Fevang and Whitson, 1996; Jokhio et al., 2002).  114 

The commonly used literature correlations for estimating gas-saturated-oil viscosities 115 

and comply with our defined constrained mentioned earlier are Beggs and Robinson, 116 

(1975), Kartoatmodjo and Schmidt, (1991), De Ghetto et al., (1994), Elsharkawy and 117 

Alikhan, (1999) and Bergman, (2000). The detailed formula of each correlation is given 118 

in Table 3. Further description of each correlation include their advantage and 119 

disadvantage is given in Appendix 1. These empirical correlations are used to estimate 120 

gas-saturated-oil viscosity as a direct function of dead oil viscosity. A brief discussion 121 

of each correlation is presented in following. 122 

Beggs and Robinsons, (1975) developed a live oil viscosity correlation based on 2073 123 

observations. The average error of -1.83% have been recorded during testing for 124 

proposed correlation. Their correlation is covering solution gas to oil ratio (Rs) within 125 

the range of 20 to 2070 scf/STB, oil gravity of 16 to 58°API, pressure range of 0 to 126 

5250 and temperature of 70 to 295°F (Beggs and Robinson, 1975; El Aily et al., 2019).  127 

 128 

Using 5321 gas-saturated-oil samples collected globally Kartoatmodjo and Schmidt, 129 

(1991) developed a gas-saturated-oil viscosity correlation as a function of dead oil 130 

viscosity and Rs. Their correlation can be applied for crude oils in the range of 14.4 to 131 

59°API gravity, temperature range of 80 to 320°F, Rs range of 0 to 2890scf/STB and 132 

live oil viscosity range of 0.098 to 586cp (Kartoatmodjo and Schmidt, 1991).  133 

 134 

De Ghetto et al., (1994) developed a correlation for light oil viscosity with gravity of 135 

API > 31.1 as a function of solution gas to oil ratio (Rs) and dead oil viscosity. His 136 

correlation is based on 195 data points collected globally. Their correlation is able to 137 

predicts live oil viscosity with less than 10% error within the temperature range of 80.6 138 

to 334.6 °F, Rs of 8.61 to 3299scf/STB and 0.07< 𝜇𝑜𝑏< 295.9cp (De Ghetto et al., 139 

1994).   140 
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Elsharkawy and Alikhan, (1999) developed their gas-saturated-oil viscosity correlation 141 

utilizing 254 datasets from Middle East oil samples. They concluded their research 142 

with 18.6% average absolute relative error obtained from proposed correlation. Their 143 

correlation covers the data range of 10 to 3600 for (Rs) and 0.05 to 20.89cp (𝜇𝑜𝑏) 144 

(Elsharkawy and Alikhan, 1999).   145 

Bergman, (2000) developed a gas-saturated crude oil viscosity using 2048 data points 146 

collected from worldwide. Bergman’s correlation can be used in the range of 5 to 147 

2890scf/STB solution gas to oil ratio (Rs) and live oil viscosity (𝜇𝑜𝑏) range of 0.125 to 148 

123cp with absolute average error of 9% (Whitson et al., 2000).  149 

All aforementioned correlations developed from crude oil, which has compositional 150 

differences with gas condensate fluid composition. Moreover, they are direct function 151 

of dead oil viscosity, which is one of the most unreliable properties to be predicted by 152 

correlations due to the large effect that oil type (paraffinicity, aromaticity and 153 

asphaltene content) has on viscosity (Aily et al., 2019; Whitson et al., 2000). 154 

Condensate liquid viscosity in near wellbore region can change significantly during 155 

depletion in gas condensate reservoirs (Al-Meshari et al., 2007; Fevang, 1995; 156 

Whitson et al., 2000). Consequently, empirical and semi-empirical correlations do not 157 

fully reflect the viscosity changes with pressure in gas condensate reservoirs near 158 

wellbore region. Therefore, the utilized correlations in this study have tuned to match 159 

the experimental condensate liquid viscosity data.   160 

The recent development and success of machine learning techniques in solving 161 

complex engineering problems has drawn attention to their various application in 162 

petroleum industry (Ahmadi et al., 2014; Ahmadi and Ebadi, 2014a; Ghiasi et al., 2014; 163 

Hemmati-Sarapardeh et al., 2014; Kamari et al., 2013; Naderi and Khamehchi, 2019; 164 

Shokir, 2008). For gas condensate reservoirs Ahmadi and Ebadi (2014), Elsharkawy 165 

and Foda (1998), Jalali et al. (2007) and Nowroozi et al. (2009) were using machine 166 

learning (ML) approach for predicting dew point pressure. Zendehboudi et al. (2012) 167 

used ML approach to model condensate-to-gas ratio (CGR) of gas condensate 168 

reservoirs. Recently Ghiasi et al. (2014) employed LSSVM to predict compressibility 169 

factor of gas condensate reservoirs.  170 

Although the aforementioned studies modelled some aspects of gas condensate 171 

reservoirs such as dew point pressure, CGR and compressibility factor, however there 172 

is a gap in literature for modelling viscosity of gas condensate reservoirs using ML 173 

approaches. In fact, to the best of the author’s knowledge, there is not any published 174 
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work on modelling condensate liquid viscosity of gas condensate reservoirs using any 175 

ML approach. Therefore, the aim of this study is to develop novel models for prediction 176 

of condensate viscosity in gas condensate reservoirs based on machine learning 177 

techniques, namely, Least Squares Support Vector Machine (LSSVM) and Artificial 178 

Neural Network (ANN). For this purpose, more than 300 data sets from 13 PVT reports 179 

and experimental study were collected and a data bank was created. To establish 180 

accuracy of the proposed models an error analysis in terms of coefficient of 181 

determination (R2), root-mean square error (RMSE) and mean square error (MSE) is 182 

carried out. In addition, in order to evaluate the performance of the newly proposed 183 

models against the existing empirical correlations, graphical and statistical error 184 

analysis are utilized (Hagan and Menhaj, 1994).  185 

2. Methodology 186 
2.1 Data acquisition 187 
A database was developed in order to ascertain the accuracy of the proposed methods 188 

and examine the suitability of published viscosity correlations. Data from gas 189 

condensate PVT reports and also experimental investigation of gas condensate fluid 190 

is the base of our data bank. More than 300 data sets have been utilized for developing 191 

and testing the models. This data bank includes API gravity, gas specific gravity, 192 

reservoir fluid compositions, reservoir pressure, reservoir temperature and initial gas 193 

to oil ratio (GOR). Various techniques were used to measure viscosity of the 194 

condensate phase such as using electromagnetic pulse technology viscometer, rolling 195 

ball viscometer and capillary viscometer. 196 

Ranges, sources and their corresponding statistical parameters of the data are 197 

presented in Table 1. The data base represents a comprehensive wide range of gas 198 

condensate systems obtained worldwide. Hence, the developed models in this study 199 

should be reliable to use in prediction of condensate viscosity below the dew points 200 

globally within the specified pressure and temperature.  201 
Author Source of 

data 
Pressure(psia) Tem (°F)                       Solution 

GOR(Rs)                                  
μ(cp) 

Al-Meshari et 

al., (2007)  

Saudi 

Arabia 

0 – 5000  243 334 – 6759  

 

0.264 – 

0.561  

      

Yang et al., 

(2007)  

Norway 630 – 7014  338 1889 – 10279  0.178 – 

0.271  
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Kashefi et al., 

(2013)  

Binary 

Mixture 

6011 – 20023  122 – 302  8125 – 25067  0.034 – 

0.199 

      

Thomas and 

Bennion, 

(2009)  

Recombined 

fluid 

2900 – 10600  246 2985 – 11812   

 

0.076 – 

0.62  

      

Chen et al., 

(1995)  

North Sea 4520 – 5733  259 7195 – 9264  0.1175 – 

0.1572 

      

Wheaton and 

Zhang, (2007)  

Mixture C1-

C7 

304 – 2393  

 

160 283 – 2661  

 

0.04 – 

0.141  

      

Saeedi and 

Rowe, (1981)  

US 253 – 2730  109 – 189  1889 - 10279 

 

0.171 – 

0.271  

      

Gozalpour et 

al., (2005)  

Binary 

Mixture 

549 – 5019  

 

100 6859 – 8592  

 

0.0386 – 

0.042  

      

Guo et al., 

(1997)  

Binary 

Mixture 

2610 – 5366  

 

110 – 262  5551 – 6000  

 

0.45 – 0.67 

 

      

O’Dell and 

Miller, (1967)  

US, Texas 1500 – 3500  

 

Unknown 2027 – 4731  

 

0.075 – 

0.27 

Fetkovich et 

al., (1986)  

North Sea 2827 – 6791  

 

155 3686 – 9180  

 

0.171 – 

0.332 

      

Ghahri et al., 

(2011) 

Binary Fluid  800 – 5255  Unknown 1081 – 7103  0.0261 – 

0.1411 

Audonnet and 

Pádua, (2004)  

Binary Fluid 14 – 10877  76 – 247  18 – 14703  0.086 – 

1.672 
Table 1. The origin and the ranges of data used for condensate liquid viscosity study. 202 

2.2 Prediction of liquid dropout viscosity using literature correlations  203 
The (Lohrenz et al., 1964) correlation shown in Eq. (1) is one of the most common 204 

methods in petroleum industry for estimating the viscosity of petroleum fluid and 205 
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commonly known as LBC method. The LBC is based on generalised relationship 206 

between viscosity and fourth degree polynomial of the reduced density. 207 

 
[(𝜇 − 𝜇∗)𝜁 + 10−4]

1
4 = 𝐴 0 +𝐴 1𝜌𝑟 +𝐴 2𝜌𝑟2 − 

𝐴 3𝜌𝑟
3 + 𝐴 4𝜌𝑟

4 
 

(1) 

Where ζ is the viscosity reducing parameter shown in Eq. (2), 𝜌𝑝𝑟 is reduced density 208 

calculated by Eq. (3), 𝜇∗ is low pressure gas mixture viscosity defined by Eq. (4), A0 – 4 209 

are LBC coefficients of 0.1023, 0.023364, 0.058523, -0.040758 and 0.0093324 210 

respectively.  211 

 𝜁 = 5.35(
𝑇𝑝𝑐

𝑀𝑖3𝑃𝑝𝑐
4)

1/6

 (2) 

 𝜌𝑝𝑟 =
𝜌

𝜌𝑝𝑐
=
𝜌

𝑀
𝜈𝑝𝑐 (3) 

 𝜇∗ =
∑ 𝑧𝑖𝜇𝑖
𝑁
𝑖=1

∑ 𝑧𝑖√𝑀𝑖
𝑁
𝑖=1

 (4) 

Kay’s mixing rule (Kay, 1936) is utilized to calculate the pseudocritical properties of 212 

temperature 𝑇𝑝𝑐, pressure 𝑃𝑝𝑐 and volume 𝜈𝑝𝑐. In Eq. (4) 𝑧𝑖 is the mole fraction of 213 

each pure components 𝑖 and 𝑀𝑖 is molecular weight of each component.  214 

To establish special relation between 𝐶7+ fractions and critical volume Eq. (5) 215 

suggested by (Lohrenz et al., 1964) is used. 216 

 
𝑣𝑐𝐶7+  =  21.573 + 0.015122 𝑀𝐶7+ −  27.65𝛾𝐶7+  +

 0.070615 𝑀𝐶7+𝛾𝐶7+  
(5) 

Where 𝑣𝑐𝐶7+ is the critical molar volume, 𝑀𝐶7+ is molecular weight and 𝛾𝐶7+ is specific 217 

gravity of C7+ fraction.  218 

The component viscosities, 𝜇𝑖 in Eq. (4) is calculated using (Stiel and Thodos, 1962) 219 

expression as follows.  220 
 221 

 {
𝜇𝑖𝜁𝑖 = (34 × 10

−5)𝑇𝑟0.94                                            𝑓𝑜𝑟 𝑇𝑟 ≤ 1.5

𝜇𝑖𝜁𝑖 = (17.78 × 10
−5)(4.58𝑇𝑟 − 1.67)5/8          𝑓𝑜𝑟 𝑇𝑟 > 1.5

} (6) 

 222 
In LBC correlation viscosity unit ‘𝜇’ is in centipoise (cp), viscosity reducing parameter 223 

‘ζ’ is in cp-1, ρ is in lbm/ft3, specific volume ‘𝑣𝑐 ’ is in ft3/lbm mol, temperature ‘T’ is in 224 

Rankine (°R), pressure ‘P’ is in psia, and molecular weight of each component ‘Mi’ is 225 

in lbm/lbm mol. 226 
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The prediction capability of the LBC for viscosity measurement of the hydrocarbon 227 

liquid especially in gas condensate reservoirs below the dew point is very poor and 228 

rapid increase in liquid viscosity cannot be represented by original LBC correlation (Ali, 229 

1991; Hernandez; et al., 2002; Yang et al., 2007). The result of this study illustrated in 230 

Fig. (1a) also indicates LBC performance in predicting condensate liquid viscosity is 231 

very poor. Hence LBC correlation has been regressed using least-square approach to 232 

match the experimental viscosity data. The procedure for tuning of the LBC correlation 233 

recommended by Yang et al., (2007) followed in this study. The coefficients of A0 – 4 in 234 

LBC correlation Eq. (1) has tuned and new coefficient values are presented in Table. 235 

2.  236 
Coefficients New values 

A0 0.11364 
A1 0.02173 
A2 -0.20666 
A3 0.06283 
A4 0.17139 

Table 2.  The new coefficients for LBC correlations. 237 

Fig (1a) depicts the prediction performance of LBC correlation with default and 238 

regressed values in predicting condensate viscosity. As it can be seen the 239 

performance of the LBC correlation improved significantly after tuning the coefficients.  240 

The second types of the empirical correlations, used in this study correlate gas-241 

saturated-oil viscosity as a function of deal oil viscosity and solution gas to oil ratio. 242 

Six well known published literature correlations were selected for this purpose. The 243 

prediction performance of gas-saturated-oil correlations found to be poor in forecasting 244 

viscosity of condensate liquid and the results associate with large error. Therefore, in 245 

this study these correlations have been refined to match the experimental 246 

measurements. Table 3 depicts the original and tuned form of the utilized correlations 247 

for predicting condensate liquid viscosity.  248 

Graphical error analysis of the refined literature correlations in predicting condensate 249 

viscosity is presented in Fig (1b-1f). The slope line of 45° in aforementioned figures 250 

representing zero error line in matching between measured and calculated values 251 

(Mansour et al., 2013). Qualitative error analysis in terms of coefficient of 252 

determination (R2), absolute average relative deviation percentage (AARD%), mean 253 

square error (MSE) and root-mean square error (RMSE) has been applied. From Fig 254 

(1b-1f), and also quantitative error analysis in Table 6, Kartoatmodjo and Schmidt, 255 

(1991) outperforms other methods followed by Elsharkawy and Alikhan, (1999), 256 
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Bergman, (2000), De Ghetto et al., (1994), Beggs and Robinson, (1975) and LBC, 257 

(1964) correlation. The results of tuned correlations compared to the proposed LSSVM 258 

and ANN numerical methods, which will be discussed later.   259 
Author Correlation Tuned correlation 

 

Beggs & Robinson, 

(1975) 

𝜇𝑜𝑏 = 𝐴(𝜇𝑜𝑑)
𝐵 

 

𝐴 =
10.715

(𝑅𝑠 + 100)
0.515

 

 

𝐵 =
5.44

(𝑅𝑠 + 150)
0.338

 

 

𝜇𝑐 = 𝐴(𝜇𝑜𝑑)
𝐵 

 

𝐴 =
17.99

(𝑅𝑠 + 100)
0.515

 

 

𝐵 =
4.056

(𝑅𝑠 + 150)
0.338

 

 

 

Kartoatmodjo & 

Schmidt, (1991) 

𝜇𝑜𝑏 = −0.06821 + 0.9824𝑋1 + 4.034

× 10−4𝑋2
2 

 
𝑋1 = 0.43 + 0.5165 × 10

(−8.1×10−4𝑅𝑠) 
 
𝑋2
= [0.2001 + 0.8428

× 10(−8.1×10
−4𝑅𝑠)]𝜇𝑜𝑑

𝑋1 
 

𝜇𝑐 = −0.30612 + 1.174𝑋1
+ 4.034

× 10−4𝑋2
2 

 
𝑋1 = 0.43 + 0.5165

× 10(−8.1×10
−4𝑅𝑠) 

 
𝑋2
= [0.2001 + 0.8428

× 10(−8.1×10
−4𝑅𝑠)]𝜇𝑜𝑑

𝑋1 
 

 

De Ghetto, (1994) 
For (°API > 31.1)        

𝜇𝑜𝑏 = 𝐴(𝜇𝑜𝑑)
𝐵 

 

𝐴 =
25.192

(𝑅𝑠 + 100)
0.6487

 

 

𝐵 =
2.7516

(𝑅𝑠 + 150)
0.2135

 

 

 

𝜇𝑐 = 𝐴(𝜇𝑜𝑑)
𝐵 

 

𝐴 =
62.96

(𝑅𝑠 + 100)
0.6487

 

 

𝐵 =
2.1334

(𝑅𝑠 + 150)
0.2135

 

 

 

Elsharkawy & 

Alikhan, (1999) 

𝜇𝑜𝑏 = 𝐴(𝜇𝑜𝑑)
𝐵 

 
𝐴 = 1241.932(𝑅𝑠 + 641.026)

−1.12410 
 
𝐵 = 1768.84(𝑅𝑠 + 1180.335)

−1.06622 
 

𝜇𝑐 = 𝐴(𝜇𝑜𝑑)
𝐵 

 
𝐴
= 3978.167(𝑅𝑠
+ 641.026)−1.12410 
 
𝐵
= 1361.93(𝑅𝑠
+ 1180.335)−1.06622 
 

 

Bergman, (2000) 
𝜇𝑜𝑏 = 𝐴(𝜇𝑜𝑑)

𝐵 
 

𝐴 = 𝑒[4.768−0.8359 ln(𝑅𝑠+300)] 

𝐵 = 0.555 +
133.5

𝑅𝑠 + 300
 

𝜇𝑐 = 𝐴(𝜇𝑜𝑑)
𝐵 

 
𝐴 = 𝑒[4.6792−0.7772 ln(𝑅𝑠+300)] 

𝐵 = 0.555 +
133.5

𝑅𝑠 + 300
 

Table 3. The original and tuned form of the employed literature correlations for predicting condensate 260 
liquid viscosity. 261 

 262 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 1. Cross plot of the experimental viscosity versus predicted viscosity using employed correlations 263 
and their tuned results.  264 

2.3  Least square support vector machine (LSSVM) 265 
The support vector machine (SVM) has been identified as an efficient and powerful 266 

strategy developed from the machine-learning community (Cortes and Vapnik, 1995; 267 

Curilem et al., n.d.; Suykens et al., 2002). SVM is a tool for a set of related supervised 268 

learning methods that analyse data and recognize pattern using regression analysis 269 

and it is identified as a non-probabilistic binary linear classifier. The objective of this 270 

study is to develop a nonlinear relationship between the available experimental data 271 

considered as inputs (pressure, temperature, API gravity, gas to oil ratio and gas 272 

specific gravity) and the desired output (liquid dropout or condensate liquid viscosity) 273 
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(Ahmadi and Ebadi, 2014; Eslamimanesh et al., 2012; Hemmati-Sarapardeh et al., 274 

2014; Kamari et al., 2013).  275 

SVM method has many advantages over other machine learning techniques as 276 

follows: they are more likely to converge to the global optima, prior determination of 277 

the network is not required in this model and can be automatically determined as the 278 

training ends. Furthermore, the number of hidden layers and hidden nodes should not 279 

be determined and this algorithm has fewer adjustable parameters compared to ANN 280 

network (Eslamimanesh et al., 2012; Suykens et al., 2002).  281 

Original SVM algorithm requires implementing set of nonlinear equations using 282 

quadratic programming, which is very hard to implement. Also the obtained outputs 283 

using SVM algorithm is much scattered for both linear and nonlinear regressions 284 

(Eslamimanesh et al., 2012; Suykens et al., 2002; Suykens and Vandewalle, 1999). 285 

To overcome abovementioned problems Suykens and Vandewalle, (1999) suggested 286 

a modification to the original SVM algorithm named Least-Squares Support Vector 287 

Machine (LSSVM). The LSSVM only requires solving set of linear equations, makes it 288 

easier to implement and faster alternative to the original SVM method (Eslamimanesh 289 

et al., 2011; Pelckmans et al., 2002; Suykens and Vandewalle, 1999). Suykens and 290 

Vandewalle, (1999) defined the cost function (J) for LSSVM by Eq. (7).   291 

 𝐽 =
1

2
𝑤𝑇𝑤 +

1

2
𝛾∑𝑒2𝑘

𝑁

𝑘=1

 (7) 

Eq. (7) is subjected to the following constraint: 292 

 
𝑦𝑘 = [𝑤

𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘], 𝑘 = 1,… ,𝑁. 

 

(8) 

 

Where, 𝑥𝑘 is input vector containing the input parameters (pressure, temperature, 293 

solution gas to oil ratio and gas specific gravity), 𝑦𝑘 is output vector (condensate liquid 294 

viscosity), b stands for intercept of linear regression in LSSVM method,  𝑤 stands for 295 

regression weight, 𝑒𝑘 is the regression error for N training objects in least-squares 296 

error approach, 𝛾 is relative weight of the summation of the regression errors 297 

compared to the regression weight (right hand side of Eq. (7), 𝜑 is the feature map, 298 

mapping the feasible input region to the high dimensional feature space and transcript 299 

T stands for transposing the matrix.  300 

Applying Lagrangian function, the regression weight 𝑤 can be defined in Eq. (9). 301 
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 𝑤 =∑𝛼𝑘𝑥𝑘

𝑁

𝑘=1

 (9) 

Where  302 

 𝛼𝑘 = 2𝛾𝑒𝑘 (10) 

𝑎𝑘 denotes to the Lagrange multiplier, that may be either positive or negative, since 303 

LSSVM has equality restrictions. Assuming linear regression between the inputs and 304 

output parameters of LSSVM algorithm, Eq. (8) is re-written as follows (Pelckmans et 305 

al., 2002; Suykens et al., 2002; Suykens and Vandewalle, 1999).  306 

 𝛼𝑘 =
(𝑦𝑘 − 𝑏)

𝑥𝑘
𝑇𝑥 + (2𝛾)−1

 (11) 

The linear regression in Eq. (11) can be converted to a nonlinear using the Kernel 307 

function in Eq. (12) 308 

 𝑓(𝑥) = ∑ 𝛼𝑘

𝑁

𝑘,𝑙=1

𝐾(𝑥, 𝑥𝑘) + 𝑏 (12) 

Where 𝐾(𝑥, 𝑥𝑘) represents dependency of Kernel function to the inner values of two 309 

vectors 𝑥 and 𝑥𝑘 in the feasible region built by the inner product of the vectors ɸ(𝑥)𝑇 310 

and ɸ(𝑥𝑖) as follows: (Cortes and Vapnik, 1995; Eslamimanesh et al., 2012; Fazeli et 311 

al., 2013; Suykens et al., 2002; Suykens and Vandewalle, 1999). 312 

 
𝐾(𝑥, 𝑥𝑘) = ɸ(𝑥)𝑇ɸ(𝑥𝑘) 

 
(13) 

The radial basis function (RBF) Kernel defined in Eq. (14) has been executed.  (Cortes 313 

and Vapnik, 1995; Eslamimanesh et al., 2012; Pelckmans et al., 2002; Suykens et al., 314 

2002): 315 

 𝐾(𝑥, 𝑥𝑘) = exp (−
‖𝑥𝑘 − 𝑥‖

2

𝜎2
) (14) 

Where 𝜎 in Eq. (14) and 𝛾 in Eq. (7) are tuning parameters of LSSVM and can be 316 

determined  by any external optimization algorithm. Robust Simulated Annealing (SA) 317 

algorithm in MATLAB optimization toolbox has been used to find the optimum values 318 

of these parameters. The root mean square error (RMSE) between the developed 319 

LSSVM model obtained results and experimental values, defined by Eq. (15), was 320 

considered as an objective function during the SA computation.  321 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑉𝑖𝑠𝑒𝑠𝑡𝑖 − 𝑉𝑖𝑠𝑒𝑥𝑝𝑖)

2𝑛
𝑖=1

𝑛𝑠
 (15) 
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Where 𝑉𝑖𝑠 represents condensate viscosity, subscripts est and exp represent the 322 

predicted and actual value, ns is number of data points from the initial assigned 323 

population of 144 data sets. The optimized values of   𝛾 and 𝜎2 using SA optimization 324 

method for predicting the condensate liquid viscosity presented in Table 4. 325 
LSSVM model Input parameters Model parameters 

𝛾 𝜎2 

Condensate phase 

viscosity  

Reservoir pressure, 

Temperature, API, gas SG, Rs  

 

5625.256 

 

23.65 

Table 4. The optimum values of the LSSVM parameters. 326 

In this study the data is divided into three subsets of “Training”, “Optimization” and 327 

“Testing”. Training set is used for generating the model structure, optimization is used 328 

for minimization of the error in trained model and test data is used to investigate the 329 

prediction capability of the developed model.  330 

The database was randomly split into three sub data sets of 80% training,10% testing 331 

and 10% validation. The allocation percentage of the data is selected according to the 332 

recommendations by Ahmadi and Ebadi, (2014) and Eslamimanesh et al., (2012).  333 

During the training of the model cross validation has been performed where, the 334 

training data sets into several folds and accuracy of each fold checked. Table 5 is 335 

presenting the statistical error analysis of the LSSVM in each stage of training, 336 

optimizing and testing.    337 

Input variables for this model are as pressure, temperature, API gravity, gas specific 338 

gravity and solution gas to oil ratio “Rs”. The acceptable distribution of the data is one 339 

with homogeneous accumulations of the data on the domain of the three data sets 340 

(Eslamimanesh et al., 2011; Gharagheizi et al., 2014).  341 

The MATLAB code for trained LSSVM model generated and prediction capability of 342 

the trained model was tested for new data sets. The graphs in Fig. 2 and Fig. 3 are 343 

indicating the performance of LSSVM model in training stage and in predicting new 344 

experimental set of data (testing stage), respectively. The majority (73%) of the data 345 

points in this study are within lower viscosity range of 0 – 0.4cp. Therefore, the testing 346 

of the data is toward lower viscosity region, which is more realistic characterisation of 347 

gas condensate viscosity below the dew point near wellbore region (Whitson et al., 348 

1999; Yang et al., 2007). The viscosity of condensate liquid in near wellbore region, 349 

where condensate liquid in mobile is very low. This is due to existence of more lighter 350 
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C7+ fractions in mobile condensate liquid composition in aforementioned region 351 

(Fevang, 1995, p. 44).  Even though the higher viscosity prediction in Fig. (3) has 352 

higher error than the lower viscosity prediction, the AARD% is still reasonably small 353 

because the majority (73%) of the values are in lower viscosity region.   354 

Fig. 4 is representing residual plot of LSSVM trained data. Ability of the trained LSSVM 355 

in predicting new data sets are also analysed by presenting graph of standard 356 

deviation error in Fig. 5 and standard error from the mean in Fig. 6.  357 
 358 

Stage of the process 𝑅2a RMSEb MSEc AARD%d 

Training set 0.9139 0.10845 0.01176 13.96 

Optimization set  0.87256 0.111121 0.012348 14.12 

Testing set 0.7723 0.121037 0.01465 14.25 

Table 5. Statistical error performance of the LSSVM. 359 

a    𝑅2 = 1 −
∑ (𝑐𝑎𝑙.((𝑖))/𝐸𝑠𝑡.(𝑖)−𝑒𝑥𝑝.(𝑖))2𝑁
𝑖

∑ (𝑐𝑎𝑙.((𝑖))/𝐸𝑠𝑡.(𝑖)−𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑒𝑥𝑝.(𝑖)))
2

𝑁
𝑖

 360 

b    𝑅𝑀𝑆𝐸 = (∑ (𝑐𝑎𝑙.((𝑖))/𝐸𝑠𝑡.(𝑖)−𝑒𝑥𝑝.(𝑖))2𝑁
𝑖

𝑁
)
0.5

 361 

c     𝑀𝑆𝐸 = (
∑ (𝑐𝑎𝑙.((𝑖))/𝐸𝑠𝑡.(𝑖)−𝑒𝑥𝑝.(𝑖))2𝑁
𝑖

𝑁
) 362 

d     𝐴𝐴𝑅𝐷% =
100

𝑁
∑

|(𝑐𝑎𝑙.((𝑖))/𝐸𝑠𝑡.(𝑖)−𝑒𝑥𝑝.(𝑖)|

𝑒𝑥𝑝.(𝑖)
𝑁
𝑖  363 

 364 
Fig. 2. Performance of the LSSVM trained model (R2=0.9136). 365 

 366 
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 367 
Fig. 3. Performance of LSSVM in predicting new data (R2=0.7738). 368 

 369 

 370 
Fig. 4. Residual plot of LSSVM trained data.   371 

 372 
Fig. 5. Graph of standard deviation of LSSVM method against experimental data.  373 
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 374 
Fig. 6. Interval plot of experimental data against LSSVM approach.  375 

 376 
Fig. 7. Comparison between experimental and predicted values provided by LSSVM for three samples 377 
of condensate fluid viscosity. 378 

 379 
The primary aim of this study was to develop a model that predicts viscosity of the 380 

condensate liquid in depleted gas condensate reservoirs with high accuracy using 381 

machine learning techniques. The results indicate that LSSVM is performing better 382 

than tuned literature correlations. However, the error is still high, approximately about 383 

23% in testing stage, where the capability of the model assessed using new data sets. 384 

Therefore, to certify the effectiveness and accuracy of the suggested LSSVM model 385 

for estimation of condensate viscosity among smart approaches in another attempt an 386 

Artificial Neural Network (ANN) was developed, which is presented in following 387 

section.  388 

2.4 Artificial Neural Networks (ANN) 389 
A detailed description of neural networks can be found in Cios and Shields (1997), 390 

Dreyfus (2005) and Haykin (1994). ANN is a computational technique in artificial 391 

intelligence that uses complex computation system for predicting the output 392 

responses. ANNs are inspired by biological networks, performing in a massive parallel 393 
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connection between nonlinear, parametrized, and bounded functions called neurons 394 

(Cios and Shields, 1997; Mesbah et al., 2017). 395 

Such a network is a massively parallel-distributed processor that has a natural 396 

tendency for storing experimental knowledge and making it available for future use. In 397 

ANN system knowledge is acquired by the network through a learning process and 398 

synaptic weights will store this knowledge (Haykin, 1994). Hence, mathematical 399 

interpretation of the problem does not required. Neurons in such a system coordinate 400 

their work, and they transfer information by using synapses “electromagnetic 401 

communications” (Ghaffari et al., 2006). Through a set of known input (5 in this study) 402 

and output data (1 in this study), the network will be trained. Through a learning 403 

process the network monitors the error between the predicted and desired outputs and 404 

continue to adjust the weights until the optimization criteria are reached. This process 405 

is usually carried out in two stages: first the input variables are linearly combined, then 406 

the result is used as argument of non-linear activation function (a). The activation 407 

function must be non-decreasing and differentiable function; the most common 408 

choices are either the identity function (𝑦 = 𝑥), or bounded sigmoid (s-shaped) 409 

function, as the logistic [𝑦 = 1/(1 + 𝑒−𝑥)] (Eslamimanesh et al., 2011; Ghaffari et al., 410 

2006; Haykin, 1994; Hippert et al., 2001).  411 

The neurons are organized in a way that define the network architecture. We used 412 

multilayer perception (MLP) type, in which the neurons are organized in layers Fig. 413 

(8). The neurons in each layer may share same inputs, but they are not connected to 414 

each other. The neural networks consist of hidden layers, output layer, inputs and bias 415 

units. Number of hidden layers and number of neuron of each layers can be arbitrary 416 

(Khosrojerdi et al., 2016). However, increasing number of neurons may cause 417 

overfitting while decreasing their numbers may result on poor performance of the 418 

network.  The main advantage of ANN is ability to process large amount of data sets 419 

(Ghaffari et al., 2006; Khosrojerdi et al., 2016; Mesbah et al., 2017; Hippert et al., 420 

2001). 421 

Fig. (8) depicts the schematic diagram of ANN structure for predicting viscosity of 422 

condensate liquid fluid. This design has one layer for inputs consists of five input 423 

parameters, one hidden layer, two bias units and one output unit. This architecture 424 

recommended by Hagan et al. (2014), Hagan and Menhaj (1994) and Hippert et al. 425 

(2001) as an efficient and the most popular multilayer feed-forward architecture. 426 

Nevertheless, there is large number of other designs, which might be considered 427 
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suitable for other applications. Further information about ANN network architecture 428 

used in this study is presented in Appendix B.  429 

The network is designed in MATLAB and calculations carried out by implementing 430 

different number of neurons in hidden layer (layer 2). To select the best architecture 431 

in terms of number of neurons in a hidden layer a trial and error procedure was 432 

implemented. The performance of each structure was assessed by comparing 433 

coefficient of determination (R2) and root man square error (RMSE). We came up with 434 

the proposed structure in Fig. (8) (5 neurons in layer 2) as the best topology.  435 

The aforementioned architecture performance evaluation is required to determine the 436 

complexity of a neural network as one of the important factors. Hagan et al, (2014) 437 

and Soroush et al, (2015) highlighted importance of level of complexity in neural 438 

network structure to ovoid overfitting with higher number of neurons and poor 439 

performance with not enough number of neurons.  440 

Our input parameters are API gravity, solution gas to oil ratio (Rs), pressure, 441 

temperature and gas specific gravity. The output layer is viscosity of condensate fluid 442 

calculated by the ANN network. There are many algorithms available to train the 443 

network and  minimize the error and find the optimum values of the weights and biases; 444 

including  Levenberg–Marquardt (LM), scaled conjugate gradient (SCG), and resilient 445 

back propagation (Hippert et al., 2001; Soroush et al., 2015).  446 

The LM backpropagation algorithm introduced by Kenneth, (1944) and recommended 447 

by Behera and Chattopadhyay, (2012) as one of the fastest and most popular 448 

backpropagation algorithm was used for adjusting the weights in this study. The 449 

tangent sigmoid transfer functions set for the neurons in hidden layer.  450 

For training of the model 70% of whole data bank (210 data points) randomly selected 451 

and split to three data sets of 80% (168 data points) for training, 10% (21 data points) 452 

for validation and 10% (21 data points) for testing.  453 

The ANN network is trained to map input data by iterative adjustment of the weight 454 

function. Information from inputs feed forwarded through the network to optimize the 455 

weight between the neurons. Optimization of the weight function is carried out by back 456 

propagation of the error during training or learning stages. The ANN reads the inputs 457 

and output values in training stage and changes the value of weight functions to 458 

minimise the difference in predicted and the target (observed) values. The error in 459 

prediction is minimized across training iterations (epochs) and training continues to 460 

the point that  the network reaches a specified level of accuracy (Ghaffari et al., 2006). 461 
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Once the model has reached satisfactory accuracy or the model is converged, the 462 

training will stop. The performance of the ANN trained model for the training stage is 463 

presented in Fig. (9) and Fig. (10).  464 

Fig. (7) and Fig. (11) depict the performance of the developed LSSVM and ANN 465 

models respectively in predicting the condensate viscosity data. As it can be seen from 466 

the aforementioned figures both LSSVM and ANN network predict the independent 467 

sample data with satisfactory accuracy. This will be discussed in details in results 468 

section. 469 

 470 
Fig. 8. Developed ANN model architecture for prediction of condensate liquid viscosity. 471 

 472 

 473 
Fig. 9. Prediction performance of developed ANN network for condensate liquid viscosity in training 474 
stage. 475 



21 
 

 476 
Fig. 10. Prediction performance of ANN network for condensate liquid viscosity in testing stage. 477 

 478 
Fig. 11. Prediction performance of ANN model for 3 condensate liquid viscosity samples as a function 479 
of pressure.  480 

 481 
 482 
Fig. 12. Performance comparison of employed methods in this study in predicting experimental 483 
condensate liquid viscosity. 484 
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  485 
 486 
 487 

Method R2 RMSE MSE AARD% 

LBC (1964) 0.7241 0.1240 0.0154 27.07 
Bergman (2000) 0.7297 0.1236 0.0153 26.29 

Beggs and Robinson 
(1975) 

0.7207 0.1244 0.0155 27.84 

Elsharkawy and Alikhan 
(1999) 

0.7344 0.1228 0.0151 24.87 

De Ghetto (1994) 0.7243 0.1240 0.0154 27.56 
Kartoatmodjo and 

Schmidt (1994) 
0.7412 0.1220 0.0149 23.89 

LSSVM 0.7738 0.1208 0.0146 17.22 

ANN 0.8423 0.1144 0.0131 16.20 
 488 
Table 6. Statistical parameters of developed models and utilized correlation for prediction of 489 
condensate liquid viscosity. 490 

3 Results and discussion  491 
In this study two intelligent based models of LSSVM and ANN were developed to 492 

predict condensate liquid viscosity in depleted gas condensate reservoirs near 493 

wellbore region.  494 

In first phase of this study prediction performance of LBC compositional model and 5 495 

gas-saturated-oil empirical literature correlations were investigated for prediction of 496 

condensate viscosity.  497 

The prediction performance of the compositional method of LBC, (1964) in predicting 498 

condensate liquid viscosity is very poor (Yang et al., 2007) and adjustment of LBC 499 

coefficients are usually necessary to match the experimental condensate viscosity 500 

(Fevang and Whitson, 1996; Whitson et al., 1999; Yang et al., 2007). The statistical 501 

analysis of the results shown in Fig. (1a) confirm the poor performance of 502 

compositional based LBC model. The reason for this is might due to the sensitivity of 503 

LBC method to mixture density and critical volumes of the heavy components. Hence, 504 

in this study the coefficients of the LBC correlation have tuned using least-square 505 

approach to match the experimental condensate viscosity data. Fig. (1a) representing 506 

the prediction performance of LBC, (1964) with default and adjusted coefficients.  507 

The coefficients of five well-known gas-saturated-oil viscosity literature correlations 508 

regressed to match the condensate experimental data. The results of these 509 

regressions presented in Fig. (1b – f). These empirical correlations are function of 510 

dead oil viscosity and solution gas to oil ratio. It should be noted that dead oil viscosity 511 
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is one of the most “difficult” properties to be estimated by correlations due to its 512 

dependency to paraffin, aromatic, naphthalene and asphaltene content (Hemmati-513 

Sarapardeh et al., 2014; Whitson et al., 2000). This might be one of the reasons for 514 

poor performance of the default empirical gas-saturated-oil viscosity correlations. 515 

Moreover, these correlations were originally developed using crude oil samples, which 516 

its properties are fundamentally different from condensate liquid.  517 

Poor performance of the published literature correlations in predicting liquid dropout 518 

viscosity, motivated to develop two machine leaning models of LSSVM and ANN 519 

network in this study. The performance of the newly proposed models LSSVM and 520 

ANN were compared against refined previously published correlations through 521 

graphical and statistical error analysis. The statistical error analysis results carried out 522 

in terms of coefficient of determination (R2), Root Mean Square Error (RMSE), 523 

Average Absolute Relative Deviation (AARD%) and Mean Square Error (MSE). The 524 

result of this error analysis is tabulated in the Table 6. Graphical representation of 525 

AARD% is also provided in Fig. (12). The results in Table 6 and Fig. (12) indicate ANN 526 

model outperforms other methods with AARD of 16.20%, R2 of 0.8423, RMSE of 527 

0.1144 and MSE of 0.0131. ANN followed by LSSVM, Kartoatmodjo and Schmidt 528 

(1994), Elsharkawy and Alikhan (1999), Bergman (2000), LBC (1964), De Ghetto et 529 

al. (1994) and Beggs and Robinson (1975).  530 

The results show using either compositional model of LBC or gas-saturated-oil 531 

viscosity literature correlations require significant tuning of coefficients for viscosity 532 

prediction of condensate liquid.  Whereas developed two intelligent approaches were 533 

able to monitor condensate liquid viscosity with appropriate precision and integrity.  534 

Non-linear relationship between the available experimental data and the desired 535 

outputs created using developed LSSVM model. The optimum values of two important 536 

tuning parameters of LSSVM include 𝜎2and 𝛾 are presented in Table 2. Simulated 537 

Annealing optimization (SA) algorithm was applied to achieve these two optimum 538 

values. 539 

The ability of proposed LSSVM and ANN models for calculating condensate liquid 540 

viscosity as a function of changing pressure has been investigated for three gas 541 

condensate samples from literature. Fig. (7) and Fig. (11) are demonstrating 542 

experimental and predicted condensate liquid viscosities using LSSVM and ANN 543 

models respectively. The results show that both models are able to forecast physical 544 

trend of experimental condensate viscosity. The accuracy of the models for predicting 545 
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condensate viscosity of independent samples determined by AARD%. The error 546 

analysis show that both models perform well with acceptable level of accuracy.  547 

From Fig. (7) and Fig. (11) it is evident that increasing pressure decreases the 548 

condensate viscosity. The pressure changes due to depletion in gas condensate 549 

reservoirs can have significant effect on condensate viscosity variation near wellbore 550 

region (Fevang and Whitson, 1996). This changes can be due to the complex 551 

behaviour of gas condensate reservoir below the dew points, which violate 552 

thermodynamic laws. The developed LSSVM and ANN models successfully captured 553 

the trend of condensate viscosity while utilized correlations were not accurate enough 554 

in tracking these changes.  555 

Although the prediction performance of the LSSVM was better than published 556 

literature correlations, however the error was still high with R2 of 0.7738 and AARD of 557 

17.22%. Therefore, Artificial Neural Network (ANN) method was used aiming for more 558 

accurate ML modelling approach. Performance prediction of ANN network is a function 559 

of number of neurons that is used in hidden layer (layer 2 in Fig. 8). A trial and error 560 

approach were implemented to find the optimum number of neurons. For this study 561 

the ANN architecture with five neurons provide the most satisfying results with least 562 

RMSE and the highest R2.  563 

4 Conclusion 564 
Better modelling of condensate viscosity is very important for optimizing future 565 

recoveries, simulation studies, PVT calculations and accurate production performance 566 

forecast of gas condensate reservoirs. Current techniques in literature are providing 567 

poor prediction performance of condensate viscosity in near wellbore region. Hence 568 

in this study efforts have been made to model this liquid dropout viscosity using 569 

numerical artificial intelligence based methods including Least Square Support Vector 570 

Machine (LSSVM) and Artificial Neural Network (ANN). Both LSSVM and ANN models 571 

are capable of simulating the actual physical trend of the condensate viscosity in gas 572 

condensate reservoirs with variation of condensate API gravity, reservoir pressure, 573 

reservoir temperature, solution gas to oil ratio (Rs) and gas specific gravity. The 574 

advantage of LSSVM is that overfitting is not possible with this method. The robust 575 

simulated annealing optimizer implemented to find two important tuning parameters 576 

𝜎2and 𝛾 and tune LSSVM method.  577 
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The results of this study indicated that proposed ANN and LSSVM are more robust, 578 

efficient and reliable than literature correlations. In ANN approach care should be 579 

taken to not over fit the data. This can be done by designing a network with appropriate 580 

level of complexity such as number of neurons and hidden layers.  581 

Tuning the evolved LSSVM and ANN approach with other optimization method such 582 

as Genetic Algorithm (GA) or Coupled Simulated Annealing (CSA) to reduce the error 583 

can be considered for future studies.  584 

Simplicity and flexibility of the developed model make them a good candidate to 585 

determine the viscosity of the condensate liquid in depleted gas condensate 586 

reservoirs.  The developed models can be implemented in PVT calculation of gas 587 

condensate reservoirs for more accurate and reliable modelling of such reservoirs.    588 
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Appendix A 811 
 812 
Researcher  Number of data 

points 
Fluid sample 

 
Reported error  Advantages and applicability  Disadvantages 

Lohrenz-Bary-

Clark (1964) 

 

520 data points 

used to develop 

oil viscosity and 

300 data samples 

used to develop 

dense gas 

viscosity.  

Black to highly 

volatile oil 

samples.  

High pressure 

gas mixture.  

 

16% of average 

error for oil and 

4% of average 

error for gases.  

 Can be used to determine both 

gas and hydrocarbon liquid 

viscosity. 

 The LBC correlation uses 

reservoir fluid composition to 

determine the fluid viscosity.    

 Most widely used correlation 

due to its simplicity and 

flexibility.  

 Take account of compositional 

changes in reservoirs fluids.  

 Very sensitive to mixture density and 

critical volume of heavy components.  

 Prediction performance of the LBC is 

poor for oil viscosity.  

 The tuning of coefficients is usually 

required to match the experimental data.  

 The tuning procedure is not straight 

forward especially for gas condensate 

fluids.  

 Heavy tuning of LBC coefficients can 

cause non-monotonic relations between 

viscosity and reduced density. 

 

Bergman (2000) 

2048 data points 
from worldwide 
used to develop 
gas-saturated-oil 
viscosity.  

Crude oil  

9% absolute 

average error and 

11.58% standard 

deviation.  

 

 Ability to predict the wide 

range of crude oil viscosity 

0.125 – 123cp.  

 Simple and flexible to use.  

 One of the most accurate 

method over wide range of 

conditions (Bergman and 

Sutton, 2007).  

 Limited range of solution gas to oil ratio 
5 – 2890scf/STB. 

 Applicable to crude oil and need tuning 

for other type of hydrocarbon liquids 

such as condensate liquid.  

 Inaccurate dead oil calculation can 

reduce the accuracy.  
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Elsharkawy and 
Alikhan (1999) 

254 crude oil 

samples from 

Middles East  
Crude oil  

Average relative 

error of 2.8% an 

average absolute 

error of 18.6%.  

 Ability to predict the gas-

saturated-oil viscosity in lower 

range 0.05 – 20.89cp. 

 Less input parameters in 

computation process (API, 

reservoir pressure and 

reservoir temperature).  

 Limited applicability to specific 

geographical region.  

 Function of dead oil viscosity, which 

reduce the accuracy. 

 Require accurate solution gas to oil 

ratio. 

 

Beggs and 
Robinson (1975) 

2073 data points 

used in 

development of 

correlation  

Crude oil  

Average error of -

1.83% and 

standard 

deviation of 

27.25.  

 Covers good range of solution 

gas to oil ratio (Rs) of 20 – 

2070scf/STB.  

 Widely used in industry.  

 Simple calculation procedure.  

 Unknown applicability to the specific 

region.  

 Unknown ability of predicting different 

viscosity ranges.  

Kartoatmodjo & 
Schmidt (1991) 

5321 crude oil 

data from 

Indonesia, 

America, Middles 

East & Latin 

America 

Crude oil 

Absolute error of 

0.08% and 

16.08% absolute 

average deviation   

 Comprehensive data bank has 

been used in developing the 

correlation.  

 Covers a wide range of 

viscosity between 0.096 – 

586cp. 

 Cannot accurately predict the viscosity 

at low gas-oil ratio when reservoir 

pressure becomes atmospheric.  
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De Ghetto et al. 
(1994) 

195 oil samples 

from 

Mediterranean 

Basin, Africa, 

Persian Gulf, 

North America 

(3700 data points)   

 

Light crude oil 

API >31.1 

Absolute error of 

15.2% and 

standard 

deviation of 

14.8% for oil with 

API > 31.1 

 Developed for light crude oil 

with API >31.1, which its 

properties are close to 

condensate fluid. 

 Able to predict the gas-

saturated-oil viscosity within 

the range of 0.1 – 120cp.  

 Simple calculation procedure.  

 

 Function of dead oil viscosity, which is 

hard to predict accurately.  

 Poor performance for predicting of gas 

condensate reservoirs.  

 

Table A1. Description of utilized empirical gas-saturated-oil correlations. 813 

 814 
 815 



33 
 

Appendix B  816 
This section covers mathematical hypothesis of simple neural network architecture 817 

shown in Fig. B1, where superscripts are values associated with each layer.    818 

 819 

 820 
Fig. B1. Schematic illustration of the ANN structure and computational steps to measure any output. 821 

 822 
In graph shown in Fig. B1: 823 
 824 
𝑎𝑖(𝑗) = activation" 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑗                                                             825 

Ɵ(𝑗) = matrix of weights controlling function mapping from layer j to layer j+1 826 

In order to calculate each activation function (𝑎) a sigmoid function (g) is multiplied by 827 

sum of linear combination of inputs for each neuron; these inputs include 828 

(𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑏𝑖𝑎𝑠 𝑢𝑛𝑖𝑡 𝑥0) in hidden layer. Eq. (B1) to Eq. (B3) are representing the 829 

calculation of the activation functions.   830 

Then the output function ℎ𝜃(𝑥) shown in Eq. (B4) is a sigmoid function of sum of each 831 

neuron’s weight multiplied by activation function of same neuron in layer 2. The 832 

neurons of the output layer have linear transfer functions.   833 

𝑎1
(2)
= 𝑔(Ɵ10

(1)
 𝑥0 + Ɵ11

(1)
 𝑥1 + Ɵ12

(1)
 𝑥2 + Ɵ13

(1)
𝑥3)                                                        (B1) 834 

𝑎2
(2)
= 𝑔(Ɵ20

(1)
 𝑥0 + Ɵ21

(1)
 𝑥1 + Ɵ22

(1)
 𝑥2 + Ɵ23

(1)
𝑥3)                                                        (B2) 835 

𝑎3
(2)
= 𝑔(Ɵ30

(1)
 𝑥0 + Ɵ31

(1)
 𝑥1 + Ɵ32

(1)
 𝑥2 + Ɵ33

(1)
𝑥3)                                                        (B3) 836 

ℎƟ(𝑥) = 𝑎1
(3)
= 𝑔( Ɵ10

(2)
 𝑎0
(2)
+ Ɵ11

(2)
𝑎1
(2)
+ Ɵ12

(2)
𝑎2
(2)
+ Ɵ13

(2)
𝑎3
(2)
)                                  (B4) 837 

In above equation g is a sigmoid type function and can be evaluated from Eq. (B5). 838 

𝑔(𝑧) =
1

(1+𝑒−𝑧)
                                                (B5) 839 
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To vectorise the above mathematical definition of neural network presented in 840 

Equation (B1) to (B3), the following relations can be defined: 841 

If: 842 

{

Ɵ10
(1)
 𝑥0 + Ɵ11

(1)
 𝑥1 + Ɵ12

(1)
 𝑥2 + Ɵ13

(1)
𝑥3 = 𝑍1

(2)

Ɵ20
(1)
 𝑥0 + Ɵ21

(1)
 𝑥1 + Ɵ22

(1)
 𝑥2 + Ɵ23

(1)
𝑥3 = 𝑍2

(2)

Ɵ30
(1)
 𝑥0 + Ɵ31

(1)
 𝑥1 + Ɵ32

(1)
 𝑥2 + Ɵ33

(1)
𝑥3 = 𝑍3

(2)

}                        (B6) 843 

 844 

Substituting Equation (B6) into Eq. (B1) to Eq. (B3) defines the activation functions in 845 

Equation (B7).  846 

{
 
 

 
 𝑎1

(2) = 𝑔(𝑍1
(2))

𝑎2
(2)
= 𝑔(𝑍2

(2)
)

𝑎3
(2)
= 𝑔(𝑍3

(2)
)}
 
 

 
 

                            (B7) 847 

 848 

And If:  849 

{
 
 
 

 
 
 
𝑥 =       [

𝑥0
𝑥1
𝑥2
𝑥3

]

𝑍(2) = [

𝑍1
(2)

𝑍2
(2)

𝑍3
(2)

]

}
 
 
 

 
 
 

                          (B8) 850 

And then input functions substitute with 𝑎(1) in layer one: 851 

{
𝑍(2) = Ɵ(1)𝑥 = Ɵ(1)𝑎(1)

𝑎(2) = 𝑔(𝑍(2))
}                         (B9) 852 

In equation B9, 𝑎(2) is [3x3] matrix without bias function, and if  𝑎02 = 1 for bias unit in 853 

layer 2, 𝑍(3) defined as follow:  854 

𝑍(3) = Ɵ(2)𝑎(2)                          (B10) 855 

The value of the final function or output layer is sigmoid function of Z(3), as shown in 856 

Eq. (B11).  857 

ℎƟ(𝑥) = 𝑔(𝑍
(3))                                                                                                     (B11) 858 

 859 
The values of x are considered as input of activation function. The above calculation 860 

was carried out and completed in MATLAB, to determine the output values. 861 

 862 


