12,736 research outputs found
SCR of NO with C3H6 in the presence of excess O2 over Cu/Ag/CeO2-ZrO2 catalyst
The catalytic activity of a series of CeO2-ZrO2 mixed oxides in the selective catalytic reduction (SCR) of NO by C3H6 at 400'C has been investigated. The NO reduction activity of pure CeO2 is enhanced in the presence of Zr, reaching a maximum NO conversion with CeO2(75)-ZrO2(25) catalyst. Then, the catalytic performances of Cu(4)/Ag(1)/CeO2 and Cu(4)/Ag(1)/CeO2(75)-ZrO2(25) catalysts were compared and the latter showed better activity especially in the low temperature region (250-350 C). The stronger metal-support interaction and higher reducibility shown by the Cu(4)/Ag(1)/CeO2(75)-ZrO2(25) catalyst were believed to enhance its performance compared to Cu(4)/Ag(1)/CeO2 catalyst by activating more C3H6 to selectively reduce NO within this temperature region. Central composite response surface design methodology was employed to study the effect of operating variables such as temperature, NO and C3H6 concentrations on the SCR of NO by C3H6 over Cu(4)/Ag(1)/CeO2(75)-ZrO2(25) catalyst and to determine the optimum value of operating variables for maximum NO conversion. Numerical results indicated that the optimum NO conversion of 82.89% is attained at reaction temperature =415.38 C, NO concentration= 1827.16 ppm and C3H6 concentration = 1908.13 ppm. The addition of water vapor to the reactant significantly decreased the NO conversion over Cu(4)/Ag(1)/CeO2 and Cu(4)/Ag(1)/CeO2 (75)-ZrO2(25), but the inhibition was more pronounced over Cu(4)/Ag(1)/CeO2 catalyst
Investigation of passive flow control techniques to enhance the stall characteristics of a microlight aircraft
This report investigates the enhancement of aerodynamic stall characteristics of a Skyranger microlight aircraft by the use of passive flow control techniques, namely vortex generators and turbulators. Each flow control device is designed and scaled to application conditions. Force balance measurements and surface oil flow visualisation are carried out on a half-model of the microlight to further investigate the nature of the flow on the aircraft with and without the flow control devices. The results indicate a clear advantage to the use of turbulators compared with vortex generators. Turbulators increased the maximum lift coefficient by 2.8%, delayed the onset of stall by increasing the critical angle by 17.6% and reduced the drag penalty at both lower (pre-stall) and higher angles of attack by 8% compared to vortex generators. With vortex generators applied, the results indicated a delayed stall with an increase in the critical angle by 2% and a reduced drag penalty at higher angles of attack
Photon-induced production of the mirror quarks from the model at the
The photon-induced processes at the provide clean experimental
conditions due to absence of the proton remnants, which might produce
complementary and interesting results for tests of the standard model and for
searching of new physics. In the context of the littlest model with
T-parity, we consider the photon-induced production of the mirror quarks at the
. The cross sections for various production channels are calculated and a
simply phenomenology analysis is performed by assuming leptonic decays.Comment: 20 pages, 10 figure
Mode-coupling theory for structural and conformational dynamics of polymer melts
A mode-coupling theory for dense polymeric systems is developed which
unifyingly incorporates the segmental cage effect relevant for structural
slowing down and polymer chain conformational degrees of freedom. An ideal
glass transition of polymer melts is predicted which becomes molecular-weight
independent for large molecules. The theory provides a microscopic
justification for the use of the Rouse theory in polymer melts, and the results
for Rouse-mode correlators and mean-squared displacements are in good agreement
with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres
Recommended from our members
Gain Modulation by Corticostriatal and Thalamostriatal Input Signals during Reward-Conditioned Behavior.
The cortex and thalamus send excitatory projections to the striatum, but little is known about how these inputs, either individually or collectively, regulate striatal dynamics during behavior. The lateral striatum receives overlapping input from the secondary motor cortex (M2), an area involved in licking, and the parafascicular thalamic nucleus (PF). Using neural recordings, together with optogenetic terminal inhibition, we examine the contribution of M2 and PF projections on medium spiny projection neuron (MSN) activity as mice performed an anticipatory licking task. Each input has a similar contribution to striatal activity. By comparing how suppressing single or multiple projections altered striatal activity, we find that cortical and thalamic input signals modulate MSN gain and that this effect is more pronounced in a temporally specific period of the task following the cue presentation. These results demonstrate that cortical and thalamic inputs synergistically regulate striatal output during reward-conditioned behavior
Superconductivity and Magnetism in REFeAsO1-xFx (RE=Rare Earth Elements)
Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium
(GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been
prepared via conventional solid state reaction at ambient pressure. The
non-yttrium substituted oxypnictide show superconducting transition as high as
43.9 K from temperature dependent resistance measurements with the Meissner
effect observed at a lower temperature of 40.8 K from temperature dependent
magnetization measurements. By replacing a small amount of gadolinium with
yttrium Tc was observed to be lowered by 10 K which might be caused by a change
in the electronic or magnetic structures since the crystal structure was not
altered.Comment: 4 pages, 4 figures, Journal of Physics: Conference Series
(Proceedings in the LT25 Low Temperature Physics Conference) Submitte
Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
Equilibrium formally can be represented as an ensemble of uncoupled systems
undergoing unbiased dynamics in which detailed balance is maintained. Many
non-equilibrium processes can be described by suitable subsets of the
equilibrium ensemble. Here, we employ the "weighted ensemble" (WE) simulation
protocol [Huber and Kim, Biophys. J., 1996] to generate equilibrium trajectory
ensembles and extract non-equilibrium subsets for computing kinetic quantities.
States do not need to be chosen in advance. The procedure formally allows
estimation of kinetic rates between arbitrary states chosen after the
simulation, along with their equilibrium populations. We also describe a
related history-dependent matrix procedure for estimating equilibrium and
non-equilibrium observables when phase space has been divided into arbitrary
non-Markovian regions, whether in WE or ordinary simulation. In this
proof-of-principle study, these methods are successfully applied and validated
on two molecular systems: explicitly solvated methane association and the
implicitly solvated Ala4 peptide. We comment on challenges remaining in WE
calculations
- …