9,911 research outputs found

    UV-enhanced sacrificial layer stabilised graphene oxide hollow fibre membranes for nanofiltration

    Get PDF
    Graphene oxide (GO) membranes have demonstrated great potential in gas separation and liquid filtration. For upscale applications, GO membranes in a hollow fibre geometry are of particular interest due to the high-efficiency and easy-assembly features at module level. However, GO membranes were found unstable in dry state on ceramic hollow fibre substrates, mainly due to the drying-related shrinkage, which has limited the applications and post-treatments of GO membranes. We demonstrate here that GO hollow fibre membranes can be stabilised by using a porous poly(methyl methacrylate) (PMMA) sacrificial layer, which creates a space between the hollow fibre substrate and the GO membrane thus allowing stress-free shrinkage. Defect-free GO hollow fibre membrane was successfully determined and the membrane was stable in a long term (1200 hours) gas-tight stability test. Post-treatment of the GO membranes with UV light was also successfully accomplished in air, which induced the creation of controlled microstructural defects in the membrane and increased the roughness factor of the membrane surface. The permeability of the UV-treated GO membranes was greatly enhanced from 0.07 to 2.8 L m(−2) h(−1) bar(−1) for water, and 0.14 to 7.5 L m(−2) h(−1) bar(−1) for acetone, with an unchanged low molecular weight cut off (~250 Da)

    Food Safety Knowledge and Practice Among Community in Sg. Pelek, Sepang, Selangor Darul Ehsan

    Get PDF
    Food safety is a basic requirement of food quality. It is an increasingly important public health issue to prevent and control food borne illnesses. A cross-sectional study was designed to determine level of knowledge and practice on food safety, to determine the association between knowledge and practice, and also to identify the association between socio-demographic factors and practice score of the population studied. This study was conducted among adult population in Taman Bahagia, Sungai Pelek, Sepang, Selangor Darul Ehsan. Data were collected using an interviewed structured questionnaire. A stratified random sampling was performed to obtain houses, followed by simple random sampling to select sample in the house. A total of 115 data sets were analysed using Statistical Package for Social Sciences (SPSS) version 20.0. Analysis showed that 35% of respondents have poor level of knowledge on food safety, whereas 27% of the respondents have poor level of practices on food safety. Multiple linear regression revealed that there are a significant association between education level (p<0.001), Adj b=2.57 (95% CI: 1.15, 3.99) and gender (p=0.048), Adj b=1.15 (95% CI: 0.01, 2.29) with practice score on food safety. Therefore, health promotion and education on the importance of practicing food safety at home should be focused to prevent further unwanted health effects

    Parallel computations and control of adaptive structures

    Get PDF
    The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed

    Improvement of dielectric loss of doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices

    Get PDF
    Al2O3-Ba0.5Sr0.5TiO3 (Al2O3-BST) thin films, with different Al2O3 contents, were deposited on (100) LaAlO3 substrate by pulsed laser deposition (PLD) technique. The Al2O3-BST films was demosnstrated to be a suitable systems to fabricate ferroelectric thin films with low dielectric loss and higher figure of merit for tunable microwave devices. Pure BST thin films were also fabricated for comparison purpose. The films' structure and morphology were analyzed by X-ray diffractiopn and scanning electron microscopy, respectively; nad showed that the surface roughness for the Al2O3-BST films increased with the Al2O3 content. Apart from that, the broadening in the intensity peak in XRD result indicating the grain size of the Al2O3-BST films reduced with the increasing of Al2O3 dopant. We measured the dielctric properties of Al2O3-BST films with a home-made non-destructive dual resonator method at frequency ~ 7.7 GHZ. The effect of doped Al2O3 into BST thin films significantly reduced the dielectric constant, dielectric loss and tunability compare to pure BST thin film. Our result shows the figure of merit (K), used to compare the films with varied dielectric properties, increased with the Al2O3 content. Therefore Al2O3-BST films show the potential to be exploited in tunable microwave devices.Comment: 8 pages, 4 figures, 1 table. Accepted & tentatively for Feb 15 2004 issue, Journal of Applied Physic

    Inferring gene regulatory networks from gene expression data by a dynamic Bayesian network-based model

    Get PDF
    Enabled by recent advances in bioinformatics, the inference of gene regulatory networks (GRNs) from gene expression data has garnered much interest from researchers. This is due to the need of researchers to understand the dynamic behavior and uncover the vast information lay hidden within the networks. In this regard, dynamic Bayesian network (DBN) is extensively used to infer GRNs due to its ability to handle time-series microarray data and modeling feedback loops. However, the efficiency of DBN in inferring GRNs is often hampered by missing values in expression data, and excessive computation time due to the large search space whereby DBN treats all genes as potential regulators for a target gene. In this paper, we proposed a DBN-based model with missing values imputation to improve inference efficiency, and potential regulators detection which aims to lessen computation time by limiting potential regulators based on expression changes. The performance of the proposed model is assessed by using time-series expression data of yeast cell cycle. The experimental results showed reduced computation time and improved efficiency in detecting gene-gene relationships

    Inferring gene regulatory networks from gene expression data by a dynamic Bayesian network-based model

    Get PDF
    Enabled by recent advances in bioinformatics, the inference of gene regulatory networks (GRNs) from gene expression data has garnered much interest from researchers. This is due to the need of researchers to understand the dynamic behavior and uncover the vast information lay hidden within the networks. In this regard, dynamic Bayesian network (DBN) is extensively used to infer GRNs due to its ability to handle time-series microarray data and modeling feedback loops. However, the efficiency of DBN in inferring GRNs is often hampered by missing values in expression data, and excessive computation time due to the large search space whereby DBN treats all genes as potential regulators for a target gene. In this paper, we proposed a DBN-based model with missing values imputation to improve inference efficiency, and potential regulators detection which aims to lessen computation time by limiting potential regulators based on expression changes. The performance of the proposed model is assessed by using time-series expression data of yeast cell cycle. The experimental results showed reduced computation time and improved efficiency in detecting gene-gene relationships

    Mode-coupling theory for structural and conformational dynamics of polymer melts

    Full text link
    A mode-coupling theory for dense polymeric systems is developed which unifyingly incorporates the segmental cage effect relevant for structural slowing down and polymer chain conformational degrees of freedom. An ideal glass transition of polymer melts is predicted which becomes molecular-weight independent for large molecules. The theory provides a microscopic justification for the use of the Rouse theory in polymer melts, and the results for Rouse-mode correlators and mean-squared displacements are in good agreement with computer simulation results.Comment: 4 pages, 3 figures, Phys. Rev. Lett. in pres
    corecore