285 research outputs found

    A one-compartment, direct glucose fuel cell for powering long-term medical implants

    Get PDF
    We present the operational concept, microfabrication, and electrical performance of an enzyme-less direct glucose fuel cell for harvesting the chemical energy of glucose from body fluids. The spatial concentrations of glucose and oxygen at the electrodes of the one-compartment setup are established by self-organization, governed by the balance of electro-chemical depletion and membrane diffusion. Compared to less stable enzymatic and immunogenic microbial fuel cells, this robust approach excels with an extended life time, the amenability to sterilization and biocompatibility, showing up a clear route towards an autonomous power supply for long-term medical implants without the need of surgical replacement and external refueling. Operating in physiological phosphate buffer solution containing 0.1 wt% glucose and having a geometrical cathode area of 10 cm2, our prototype already delivers 20 µ W peak power over a period of 7 days

    Controllability results for impulsive mixed type functional integro-differential evolution equations with nonlocal conditions

    Get PDF
    In this paper, we establish the controllability for a class of abstract impulsive mixed-type functional integro-differential equations with finite delay in a Banach space. Some sufficient conditions for controllability are obtained by using the Mönch fixed point theorem via measures of noncompactness and semigroup theory. Particularly, we do not assume the compactness of the evolution system. An example is given to illustrate the effectiveness of our results

    Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics.

    Get PDF
    Recent genome-wide studies conducted in European Whites have identified novel susceptibility genes for childhood acute lymphoblastic leukemia (ALL). We sought to examine whether these loci are susceptibility genes among Hispanics, whose reported incidence of childhood ALL is the highest of all ethnic groups in California, and whether their effects differ between Hispanics and non-Hispanic Whites (NHWs). We genotyped 13 variants in these genes among 706 Hispanic (300 cases, 406 controls) and 594 NHW (225 cases, 369 controls) participants in a matched population-based case-control study in California. We found significant associations for the five studied ARID5B variants in both Hispanics (p values of 1.0 × 10(-9) to 0.004) and NHWs (p values of 2.2 × 10(-6) to 0.018). Risk estimates were in the same direction in both groups (ORs of 1.53-1.99 and 1.37-1.84, respectively) and strengthened when restricted to B-cell precursor high-hyperdiploid ALL (>50 chromosomes; ORs of 2.21-3.22 and 1.67-2.71, respectively). Similar results were observed for the single CEBPE variant. Hispanics and NHWs exhibited different susceptibility loci at CDKN2A. Although IKZF1 loci showed significant susceptibility effects among NHWs (p < 1 × 10(-5)), their effects among Hispanics were in the same direction but nonsignificant, despite similar minor allele frequencies. Future studies should examine whether the observed effects vary by environmental, immunological, or lifestyle factors

    The isopropylation of naphthalene with propene over H-mordenite: The catalysis at the internal and external acid sites

    Get PDF
    The isopropylation of naphthalene (NP) with propene over H-Mordenite (MOR) was studied under a wide range of reaction parameters: temperature, propene pressure, period, and NP/MOR ratio. Selective formation of 2,6-diisopropylnaphthalene (2,6-DIPN) was observed at reaction conditions, such as at low reaction temperature, under high propene pressure, and/or with high NP/MOR ratio. However, the decrease in the selectivities for 2,6-DIPN was observed at reaction conditions such as at high temperature, under low propene pressure, and/or with low NP/MOR ratio. The selectivities for 2,6-DIPN in the encapsulated products were remained high and constant under all reaction conditions. These results indicate that the selective formation of 2,6-DIPN occurs through the least bulky transition state due to the exclusion of the bulky isomers by the MOR channels. The decrease in the selectivities for 2,6-DIPN are due to the isomerization of 2,6-DIPN to 2,7-DIPN at the external acid sites, directing towards thermodynamic equilibrium of DIPN isomers

    Tissue-specific modulation of gene expression in response to lowered insulin signalling in Drosophila

    Get PDF
    Reduced activity of the insulin/IGF signalling network increases health during ageing in multiple species. Diverse and tissue-specific mechanisms drive the health improvement. Here, we performed tissue-specific transcriptional and proteomic profiling of long-lived Drosophila dilp2-3,5 mutants, and identified tissue-specific regulation of >3600 transcripts and >3700 proteins. Most expression changes were regulated post-transcriptionally in the fat body, and only in mutants infected with the endosymbiotic bacteria, Wolbachia pipientis, which increases their lifespan. Bioinformatic analysis identified reduced co-translational ER targeting of secreted and membrane-associated proteins and increased DNA damage/repair response proteins. Accordingly, age-related DNA damage and genome instability were lower in fat body of the mutant, and overexpression of a minichromosome maintenance protein subunit extended lifespan. Proteins involved in carbohydrate metabolism showed altered expression in the mutant intestine, and gut-specific overexpression of a lysosomal mannosidase increased autophagy, gut homeostasis, and lifespan. These processes are candidates for combatting ageing-related decline in other organisms

    Photocatalytic hydrogen generation from water using a hybrid of graphene nanoplatelets and self doped TiO2-Pd

    Get PDF
    Nanohybrids of self doped (Ti doped or reduced TiO -TiOR) TiO-graphene nanoplatelets (TiO R-G) of different compositions are synthesized by a facile soft chemical method. A decrease of bandgap and improved visible light absorption is exhibited by TiOR-G. Based on current-voltage (I-V) measurements, it is concluded that the hybrid material possesses improved electron transport properties compared to TiOR and pure TiO. A detailed characterization of the composites indicated that TiOR exists as a dispersed phase on graphene nanoplatelets (graphene). Among different compositions of the composites, the catalyst containing 3 weight% of graphene (TiOR-3G) shows enhanced photocatalytic activity for hydrogen generation from water compared to both TiO and TiOR. When Pd is used as co-catalyst in this composite, a large increase in the activity is observed. The increased efficiency of the nanocomposite is attributed to factors like: (i) improved visible light absorption promoted by G and Ti dopant (ii) increased lifetime of the charge carriers assisted by the enhanced electron transporting properties of G (iii) increased number of active sites for hydrogen evolution provided by the Pd co-catalyst. This work highlights the role of TiO based hybrid materials as efficient photocatalysts for solar energy utilization. This journal i
    corecore