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Abstract
In this paper, we establish the controllability for a class of abstract impulsive
mixed-type functional integro-differential equations with finite delay in a Banach
space. Some sufficient conditions for controllability are obtained by using the Mönch
fixed point theorem via measures of noncompactness and semigroup theory.
Particularly, we do not assume the compactness of the evolution system. An example
is given to illustrate the effectiveness of our results.
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1 Introduction
In recent years, the theory of impulsive differential equations has provided a natural
framework for mathematical modeling of many real world phenomena, namely in con-
trol, biological and medical domains. In these models, the investigated simulating pro-
cesses and phenomena are subjected to certain perturbations whose duration is negligible
in comparison with the total duration of the process. Such perturbations can be reason-
ably well approximated as being instantaneous changes of state, or in the form of impulses.
These processes tend to be more suitably modeled by impulsive differential equations,
which allow for discontinuities in the evolution of the state. For more details on this the-
ory and its applications, we refer to the monographs of Bainov and Simeonov [], Laksh-
mikantham et al. [] and Samoilenko and Perestyuk [] and the papers of [–].
On the other hand, the concept of controllability is of great importance in mathemat-

ical control theory. The problem of controllability is to show the existence of a control
function, which steers the solution of the system from its initial state to the final state,
where the initial and final states may vary over the entire space. Many authors have stud-
ied the controllability of nonlinear systems with and without impulses; see, for instance,
[–]. In recent years, significant progress has been made in the controllability of linear
and nonlinear deterministic systems [, , –], and the nonlocal initial condition, in
many cases, has a much better effect in applications than the traditional initial condition.
As remarked by Byszewski and Lakshmikantham (see [, ]), the nonlocal initial value
problems can be more useful than the standard initial value problems to describe many
physical phenomena.
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The study of Volterra-Fredholm integro-differential equations plays an important role
in abstract formulation of many initial, boundary value problems of perturbed differential
partial integro-differential equations. Recently, many authors studied mixed type integro-
differential systems without (or with) delay conditions [–]. In [] the controllability
of impulsive functional differential systems with nonlocal conditions was studied by using
themeasures of noncompactness and theMon̈ch fixed point theorem, and some sufficient
conditions for controllability were established. Here, without assuming the compactness
of the evolution system, [] establishes the existence, uniqueness and continuous depen-
dence of mild solutions for nonlinear mixed type integro-differential equations with finite
delay and nonlocal conditions. The results are obtained by using the Banach fixed point
theorem and semigroup theory.
More recently, Shengli Xie [] derived the existence of mild solutions for the nonlinear

mixed-type integro-differential functional evolution equations with nonlocal conditions,
and the results were achieved by using the Mon̈ch fixed point theorem and fixed point
theory. Here some restricted conditions on a priori estimates and measures of noncom-
pactness estimation were not used even if the generator A = .
To the best of our knowledge, up to now no work has reported on controllability of an

impulsive mixed Volterra-Fredholm functional integro-differential evolution differential
system with finite delay, and nonlocal conditions has been an untreated topic in the liter-
ature, and this fact is the main aim of the present work.
This paper is motivated by the recent works [, , ] and its main purpose is to es-

tablish sufficient conditions for the controllability of the impulsive mixed-type functional
integro-differential system with finite delay and nonlocal conditions of the form

x′(t) = A(t)x(t) + f
(
t,xt ,

∫ t


h(t, s,xs)ds,

∫ b


k(t, s,xs)ds

)
+ (Bu)(t),

t ∈ J = [,b], t �= ti, i = , , . . . , s, (.)

�x|t=ti = Ii(xti ), i = , , . . . , s, (.)

x = φ + g(x), t ∈ [–r, ], (.)

whereA(t) is a family of linear operators which generates an evolution system {U(t, s) :  ≤
s ≤ t ≤ b}. The state variable x(·) takes the values in the real Banach spaceX with the norm
‖ · ‖. The control function u(·) is given in L(J ,V ), a Banach space of admissible control
functions with V as a Banach space, and thereby T = {(t, s) :  ≤ s ≤ t ≤ b}. B is a bounded
linear operator fromV intoX. The nonlinear operators h : T×D → X, k : T×D → X and
f : J × D × X × X → X are continuous, where D = {ψ : [–r, ] → X : ψ(t) is continuous
everywhere except for a finite number of points ti at which ψ(t+i ) and ψ(t–i ) exist and
ψ(ti) = ψ(t–i )}; Ii :D → X, i = , , . . . , s, are impulsive functions,  < t < t < · · · < ts < ts+ =
b, �ξ (ti) is the jump of a function ξ at ti, defined by �ξ (ti) = ξ (t+i ) – ξ (t–i ).
For any function x ∈PC and any t ∈ J , xt denotes the function in D defined by

xt(θ ) = x(t + θ ), θ ∈ [–r, ],

where PC is defined in Section . Here xt(·) represents the history of the state from the
time t – r up to the present time t.
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Our work is organized as follows. In the next section, fundamental notions and facts
related to MNC are recalled. Section  is devoted to analyzing controllability results of
the problem (.)-(.). Section  contains an illustrative example.

2 Preliminaries
In this section, we recalled some fundamental definitions and lemmas which are required
to demonstrate our main results (see [–, –]).
Let L([,b],X) be the space of X-valued Bochner integrable functions on [,b] with

the norm ‖f ‖L =
∫ b
 ‖f (t)‖dt. In order to define the solution of the problem (.)-(.), we

consider the following space: PC([–r,b],X) = {x : [–r,b]→ X such that x(·) is continuous
except for a finite number of points ti at which x(t+i ) and x(t–i ) exist and x(ti) = x(t–i )}.
It is easy to verify that PC([–r,b],X) is a Banach space with the norm

‖x‖PC = sup
{∥∥x(t)∥∥ : t ∈ [–r,b]

}
.

For our convenience, let PC =PC([–r,b],X) and J = [, t]; Ji = (ti, ti+], i = , , . . . , s.

Definition . Let E+ be a positive cone of an order Banach space (E,≤). A function �

defined on the set of all bounded subsets of the Banach space X with values in E+ is called
a measure of noncompactness (MNC) on X if �(co�) = �(�) for all bounded subsets
� ⊆ X, where co� stands for the closed convex hull of �.
The MNC � is said to be
() Monotone if for all bounded subsets �, � of X we have

(� ⊆ �) ⇒ (�(�) ≤ �(�));
() Nonsingular if �({a} ∪ �) = �(�) for every a ∈ X , � ⊂ X ;
() Regular if �(�) =  if and only if � is relatively compact in X .
One of the many examples of MNC is the noncompactness measure of Hausdorff β

defined on each bounded subset � of X by

β(�) = inf{ε > ;� can be covered by a finite number of balls

of radii smaller than ε}.

It is well known that MNC β verifies the above properties and other properties; see [,
] for all bounded subsets �, �, � of X,
() β(� +�) ≤ β(�) + β(�), where � +� = {x + y : x ∈ �, y ∈ �};
() β(� ∪ �) ≤ max{β(�),β(�)};
() β(λ�) ≤ |λ|β(�) for any λ ∈R;
() If the map Q :D(Q)⊆ X → Z is Lipschitz continuous with a constant k, then

βZ(Q�)≤ kβ(�) for any bounded subset � ⊆D(Q), where Z is a Banach space.

Definition . A two-parameter family of bounded linear operatorsU(t, s),  ≤ s ≤ t ≤ b,
on X is called an evolution system if the following two conditions are satisfied:

(i) U(s, s) = I , U(t, r)U(r, s) =U(t, s) for ≤ s ≤ r ≤ t ≤ b;
(ii) (t, s)→U(t, s) is strongly continuous for  ≤ s ≤ t ≤ b.

http://www.fixedpointtheoryandapplications.com/content/2013/1/66
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Since the evolution system U(t, s) is strongly continuous on the compact operator set
J × J , there existsM >  such that ‖U(t, s)‖ ≤ M for any (t, s) ∈ J × J . More details about
the evolution system can be found in Pazy [].

Definition . A function x(·) ∈ PC is said to be a mild solution of the system (.)-(.)
if x(t) = φ(t) + g(x)(t) on [–r, ], �x|t=ti = Ii(xti ), i = , , . . . , s, the restriction of x(·) to the
interval Ji (i = , , . . . , s) is continuous and the following integral equation is satisfied.

x(t) = U(t, )
[
φ() + gx()

]
+

∫ t


U(t, s)

[
Bu(s) + f

(
s,xs,

∫ s


h(s, τ ,xτ )dτ ,

∫ b


k(s, τ ,xτ )dτ

)]
ds

+
∑
<ti<t

U(t, ti)Ii(xti ), t ∈ J .

Definition . The system (.)-(.) is said to be nonlocally controllable on the interval J
if, for every initial function φ ∈D and x ≤ X, there exists a control u ∈ L(J ,V ) such that
the mild solution x(·) of (.)-(.) satisfies x(b) = x.

Definition . A countable set {fn}∞n= ⊂ L([,b],X) is said to be semicompact if the se-
quence {fn}∞n= is relatively compact in X for almost all t ∈ [,b], and if there is a function
μ ∈ L([,b],R+) satisfying supn≥ ‖fn(t)‖ ≤ μ(t) for a.e. t ∈ [,b].

Lemma . (See []) If W ⊂ C([a,b],X) is bounded and equicontinuous, then β(W (t)) is
continuous for t ∈ [a,b] and

β(W ) = sup
{
β
(
W (t)

)
, t ∈ [a,b]

}
, where W (t) =

{
x(t) : x ∈W

} ⊆ X.

Lemma . (See []) If W ⊂ PC([a,b],X) is bounded and piecewise equicontinuous on
[a,b], then β(W (t)) is piecewise continuous for t ∈ [a,b] and

β(W ) = sup
{
β
(
W (t)

)
, t ∈ [a,b]

}
.

Lemma . (See []) Let {fn}∞n= be a sequence of functions in L([,b],R+). Assume that
there exist μ,η ∈ L([,b],R+) satisfying supn≥ ‖fn(t)‖ ≤ μ(t) and β({fn(t)}∞n=) ≤ η(t) a.e.
t ∈ [,b], then for all t ∈ [,b], we have

β

({∫ t


U(t, s)fn(s)ds : n≥ 

})
≤ M

∫ t


η(s)ds.

Lemma . (See []) Let (Gf )(t) =
∫ t
 U(t, s)f (s)ds. If {fn}∞n= ⊂ L([,b],X) is semicom-

pact, then the set {Gfn}∞n= is relatively compact in C([,b],X).Moreover, if fn ⇀ f, then for
all t ∈ [,b],

(Gfn)(t)→ (Gf)(t) as n→ ∞.

The following fixed-point theorem, a nonlinear alternative of Mon̈ch type, plays a key
role in our proof of controllability of the system (.)-(.).
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Lemma . (See [, Theorem .]) Let D be a closed convex subset of a Banach space X
and  ∈D. Assume that F :D→ X is a continuous map which satisfies Mon̈ch’s condition,
that is, (M ⊆ D is countable, M ⊆ co({} ∪ F(M)) ⇒ M is compact). Then F has a fixed
point in D.

3 Controllability results
In this section, we present and demonstrate the controllability results for the problem
(.)-(.). In order to demonstrate the main theorem of this section, we list the following
hypotheses.
(H) A(t) is a family of linear operators, A(t) :D(A) → X , D(A) not depending on t and

a dense subset of X , generating an equicontinuous evolution system
{U(t, s) :  ≤ s ≤ t ≤ b}, i.e., (t, s) → {U(t, s)x : x ∈ B} is equicontinous for t >  and
for all bounded subsets B andM = sup{‖U(t, s)‖ : (t, s) ∈ T}.

(H) The function f : J ×D ×X ×X → X satisfies the following:
(i) For t ∈ J , the function f (t, ·, ·, ·) :D ×X → X is continuous, and for all

(φ,x) ∈D ×X , the function f (·,φ,x, y) : J → X is strongly measurable.
(ii) For every positive integer k, there exists αk ∈ L([,b];R+) such that

sup
‖φ‖D≤k

∥∥f (t,φ)∥∥ ≤ αk (t) for a.e. t ∈ J ,

and

lim
r→∞ inf

∫ b



αk (t)
k

dt = σ <∞.

(iii) There exists an integrable function η : [,b]→ [,∞) such that

β
(
f (t,D,A,B)

) ≤ η(t)
[

sup
–r≤θ≤

β
(
D(θ )

)
+ β(A) + β(B)

]
for a.e. t ∈ J and D⊂D,A,B ⊂ X,

where D(θ ) = {v(θ ) : v ∈ D}.
(H) The function h : T ×D → X satisfies the following:

(i) For each (t, s) ∈ T , the function h(t, s, ·) :D → X is continuous, and for each
x ∈D, the function h(·, ·,x) : T → X is strongly measurable.

(ii) There exists a function m ∈ L(T ,R+) such that

∥∥h(t, s,xs)∥∥ ≤ m(t, s)‖xs‖D .

(iii) There exists an integrable function ζ : T → [,∞) such that

β
(
h(t, s,H)

) ≤ ζ (t, s) sup
–r≤θ≤

H(θ ) for a.e t ∈ J

and H ⊂D, where H(θ ) = {w(θ ) : w ∈H} and β is the Hausdorff MNC.
For convenience, let us take L = max

∫ t
 m(t, s)ds and ζ * = max

∫ s
 ζ (t, s)ds.

http://www.fixedpointtheoryandapplications.com/content/2013/1/66
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(H) The function k : T ×D → X satisfies the following:
(i) For each (t, s) ∈ T , the function k(t, s, ·) :D → X is continuous, and for each

x ∈D, the function k(·, ·,x) : T → X is strongly measurable.
(ii) There exists a function m ∈ L(T ,R+) such that

∥∥k(t, s,xs)∥∥ ≤ m�(t, s)‖xs‖D .

(iii) There exists an integrable function γ : T → [,∞) such that

β
(
k(t, s,H)

) ≤ γ (t, s) sup
–r≤θ≤

H(θ ) for a.e. t ∈ J

and H ⊂D, where H(θ ) = {w(θ ) : w ∈H}.
For convenience, let us take L = max

∫ t
 m

�(t, s)ds and γ * = max
∫ s
 γ (t, s)ds.

(H) g :PC([,b] : X) → X is a continuous compact operator such that

lim‖y‖PC→∞
‖g(y)‖
‖y‖PC = .

(H) The linear operatorW : L(J ,V ) → X is defined by

W =
∫ b


U(t, s)Bu(s)ds such that

(i) W has an invertible operatorW– which takes values in L(J ,V )/kerW , and
there exist positive constantsM andM such that

‖B‖ ≤ M,
∥∥W–∥∥ ≤ M.

(ii) There is KW ∈ L(J ,R+) such that, for every bounded set Q⊂ X ,

β
(
W–Q

)
(t)≤ KW (t)β(Q).

(H) Ii :D → X , i = , , . . . , s, is a continuous operator such that
(i) There are nondecreasing functions Li :R+ →R

+ such that

∥∥Ii(x)∥∥ ≤ Li
(‖x‖D)

, i = , , . . . , s,x ∈D,

and

lim
ρ→∞ inf

Li(ρ)
ρ

= λi <∞, i = , , . . . , s.

(ii) There exist constants Ki ≥  such that

β
(
Ii(S)

) ≤ Ki sup
–r≤θ≤

β
(
S(θ )

)
, i = , , . . . , s,

for every bounded subset S of D.

http://www.fixedpointtheoryandapplications.com/content/2013/1/66
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(H) The following estimation holds true:

N =
[(

M + M
M‖KW‖L

) s∑
i=

Ki

+
[
 + 

(
ζ * + γ *)](M + M

M‖KW‖L
)‖η‖L

]
< .

Theorem . Assume that the hypotheses (H)-(H) are satisfied. Then the impulsive dif-
ferential system (.)-(.) is controllable on J provided that

M
(
 +MMMb



)[

σ ( + L + L)
]
+

s∑
i=

λi < . (.)

Proof Using the hypothesis (H)(i), for every x ∈PC([–r,b],X), define the control

ux(t) =W–
[
x –U(b, )ϕ() –

∫ b


U(b, s)

× f
(
s,xs,

∫ s


h(s, τ ,xτ )dτ ,

∫ b


k(s, τ ,xτ )dτ

)
ds –

∑
<ti<b

U(b, ti)Ii(xti )
]
(t).

We shall now show that when using this control, the operator defined by

(Fx)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [–r, ],
U(t, )[φ() + gx()] +

∫ t
 U(t, s)

× [f (s,xs,
∫ t
 h(t, τ ,xτ )dτ ,

∫ b
 k(s, τ ,xτ )dτ )ds + (Bux)(s)]ds

+
∑

<ti<t U(t, ti)Ii(xti ), t ∈ J ,

has a fixed point. This fixed point is then a solution of (.)-(.). Clearly, x(b) = (Fx)(b) = x,
which implies the system (.)-(.) is controllable. We rewrite the problem (.)-(.) as
follows.
For φ ∈D, we define φ̂ ∈PC by

φ̂(t) =

⎧⎨
⎩U(t, )[φ() + gx()], t ∈ J ,

φ(t), t ∈ [–r, ].

Then φ̂ ∈PC . Let x(t) = y(t) + φ̂(t), t ∈ [–r,b]. It is easy to see that y satisfies y =  and

y(t) =
∫ t


U(t, s)

×
[
f
(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ ,

∫ s


k(s, τ , yτ + φ̂τ )dτ

)
+ Buy(s)

]
ds

+
∑
<ti<t

U(t, ti)Ii(yti + φ̂ti ),

http://www.fixedpointtheoryandapplications.com/content/2013/1/66
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where

uy(s) =W–

[
x –U(b, )

[
φ() + gx()

]

–
∫ b


U(b, s)f

(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ ,

∫ b


k(s, τ , yτ + φ̂τ )dτ

)
ds

–
s∑
i=

U(b, ti)Ii(yti + φ̂ti )
]
(s)

if and only if x satisfies

x(t) = U(t, )
[
φ() + gx()

]
+

∫ t


U(t, s)

[
f
(
s,xs,

∫ s


h(s, τ ,xτ )dτ ,

∫ b


k(s, τ ,xτ )dτ

)
+ Bux(s)

]
ds

+
∑
<ti<t

U(t, ti)Ii(xti ),

and x(t) = φ(t) + gx(t), t ∈ [–r, ]. Define PC = {y ∈ PC : y = }. Let G : PC → PC be
an operator defined by

(Gy)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

, t ∈ [–r, ],∫ t
 U(t, s)[f (s, ys + φ̂s,

∫ s
 h(s, τ , yτ + φ̂τ )dτ ,∫ b

 k(s, τ , yτ + φ̂τ )dτ ) + Buy(s)]ds
+

∑
<ti<t U(t, ti)Ii(yti + φ̂ti ), t ∈ J .

(.)

Obviously, the operator F has a fixed point is equivalent to G has one. So, it turns out to
prove G has a fixed point. Let G =G +G, where

(Gy)(t) =
∑
<ti<t

U(t, ti)Ii(yti + φ̂ti ), (.)

(Gy)(t) =
∫ t


U(t, s)

[
f
(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ ,

∫ b


k(s, τ , yτ + φ̂τ )dτ

)

+ Buy(s)
]
ds. (.)

Step : There exists a positive number q ≥  such thatG(Bq) ⊆ Bq, where Bq = {y ∈PC :
‖y‖PC ≤ q}.
Suppose the contrary. Then for each positive integer q, there exists a function yq(·) ∈ Bq

but G(yq) /∈ Bq, i.e., ‖G(yq)(t)‖ > q for some t ∈ J .
We have from (H)-(H)

q <
∥∥(
Gyq

)
(t)

∥∥
≤ M

∫ b



∥∥∥∥f
(
s, yqs + φ̂s,

∫ s


h
(
s, τ , yqτ + φ̂τ

)
dτ ,

∫ b


k
(
s, τ , yqτ + φ̂τ

)
dτ

)
+ Buyq (s)

∥∥∥∥ds
+M

s∑
i=

Li
(∥∥yqti + φ̂ti

∥∥
D

)
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/66
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Since

∫ t



∥∥∥∥f
(
s, yqs + φ̂s,

∫ s


h
(
s, τ , yqτ + φ̂τ

)
dτ ,

∫ b


k
(
s, τ , yqτ + φ̂τ

)
dτ

)∥∥∥∥ds
≤

∫ b


αq* (s)ds,

where, q* = ( + L)q′ and q′ = q + ‖φ̂‖PC , we have

q ≤ M

∫ b


αq* (s)ds +MMb


 ‖uyq‖L +M

s∑
i=

Li
(
q′), (.)

where

‖uyq‖L ≤ M

[
‖x‖ +M‖φ‖D +M

∫ b


αq* (s)ds +M

s∑
i=

Li
(
q′)]. (.)

Hence by (.)

q < M

∫ b


αq* (s)ds +MMb


M

[
‖x‖ +M‖φ‖D +M

∫ b


αq* (s)ds +M

s∑
i=

Li
(
q′)]

+M

s∑
i=

Li
(
q′)

≤ (
 +MMMb



)
M

[∫ b


αq* (s)ds +

s∑
i=

Li
(
q′)] +M,

whereM =MMMb

 (‖x‖ +M‖φ‖D) is independent of q and q′ = q + ‖φ̂‖PC .

Dividing both sides by q and noting that q′ = q + ‖φ̂‖PC → ∞ as q → ∞, we obtain

lim
q→+∞ inf

(∫ b
 αq* (s)ds

q

)
= lim

q→+∞ inf

(∫ b
 αq* (s)ds

q*
· q

*

q

)
= σ ( + L + L),

lim
q→+∞ inf

(∑s
i= Li(q′)
q

)
= lim

q→+∞ inf

(∑s
i= Li(q′)
q′ · q

′

q

)
=

s∑
i=

λi.

Thus we have

 ≤ M
(
 +MMMb



)(

σ ( + L + L) +
s∑
i=

λi

)
.

This contradicts (.). Hence, for some positive number q, G(Bq) ⊆ Bq.
Step : G :PC →PC is continuous.
Let {y(n)(t)}∞n= ⊆ PC with y(n) → y in PC. Then there is a number q >  such that

‖y(n)(t)‖ ≤ q for all n and t ∈ J , so y(n) ∈ Bq and y ∈ Bq.
From (H) and (H) we have

http://www.fixedpointtheoryandapplications.com/content/2013/1/66
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(i)

f
(
t, y(n)t + φ̂t ,

∫ t


h
(
t, τ , y(n)τ + φ̂t

)
dτ ,

∫ b


k
(
t, τ , y(n)τ + φ̂t

)
dτ

)

→ f
(
t, yt + φ̂t ,

∫ t


h(t, τ , yt + φ̂t)dτ ,

∫ b


k(t, τ , yt + φ̂t)dτ

)

and
∥∥∥∥f

(
t, y(n)t + φ̂t ,

∫ t


h
(
t, τ , y(n)τ + φ̂t

)
dτ ,

∫ b


k
(
t, τ , y(n)τ + φ̂t

)
dτ

)

– f
(
t, yt + φ̂t ,

∫ t


h(t, τ , yt + φ̂t)dτ ,

∫ b


k
(
t, τ , y(n)τ + φ̂t

)
dτ

)∥∥∥∥ ≤ αq* (t).

(ii) Ii(y(n)ti + φ̂ti ) → Ii(yti + φ̂ti ), i = , , . . . , s.
Then we have

∥∥Gy(n) –Gy
∥∥
PC ≤

s∑
i=

∥∥Ii(y(n)ti + φ̂ti
)
– Ii(yti + φ̂ti )

∥∥ (.)

and

∥∥Gy(n) –Gy
∥∥
PC

≤ M

∫ b



∥∥∥∥f
(
s, y(n)s + φ̂s,

∫ s


h
(
s, τ , y(n)τ + φ̂τ

)
dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)

– f
(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)∥∥∥∥ds
+MM

∫ b



∥∥uy(n) (s) – uy(s)
∥∥ds

≤ M

∫ b



∥∥∥∥f
(
s, y(n)s + φ̂s,

∫ s


h
(
s, τ , y(n)τ + φ̂τ

)
dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)

– f
(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)∥∥∥∥ds
+MMb



∥∥u(n)y – uy

∥∥
L , (.)

where

∥∥u(n)y – uy
∥∥
L

≤ M

[
M

∫ b



∥∥∥∥f
(
s, y(n)s + φ̂s,

∫ s


h
(
s, τ , y(n)τ + φ̂τ

)
dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)

– f
(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)∥∥∥∥ds
+M

s∑
i=

∥∥Ii(y(n)ti + φ̂ti
)
– Ii(yti + φ̂ti )

∥∥]
. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/66
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Observing (.)-(.), by the dominated convergence theorem, we have that

∥∥Gy(n) –Gy
∥∥
PC ≤ ∥∥Gy(n) –Gy

∥∥
PC +

∥∥Gy(n) –Gy
∥∥
PC →  as n→ +∞.

That is, G is continuous.
Step :G is equicontinuous on every Ji, i = , , . . . , s. That is,G(Bq) is piecewise equicon-

tinuous on J .
Indeed, for t, t ∈ Ji, t < t and y ∈ Bq, we deduce that

∥∥(Gy)(t) – (Gy)(t)
∥∥

≤
∫ t



∥∥∥∥[
U(t, s) –U(t, s)

]

× f
(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)
+ Buy(s)

∥∥∥∥ds
+

∫ t

t

∥∥∥∥U(t, s)f
(
s, ys + φ̂s,

∫ s


h(s, τ , yτ + φ̂τ )dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)
+ Buy(s)

∥∥∥∥ds
≤

∫ t



∥∥U(t, s) –U(t, s)
∥∥αq* (s)ds +

∫ t



∥∥U(t, s) –U(t, s)
∥∥

×MM

[
‖x‖ +M

∥∥φ()
∥∥ +M

∫ b


αq* ds +M

s∑
i=

Li
(
q′)]ds

+
∫ t

t

∥∥U(t, s)
∥∥αq* (s)ds +

∫ t

t

∥∥U(t, s)
∥∥

×MM

[
‖x‖ +M

∥∥φ()
∥∥ +M

∫ b


αq* ds +M

s∑
i=

Li
(
q′)]ds. (.)

By the equicontinuity of U(·, s) and the absolute continuity of the Lebesgue integral, we
can see that the right-hand side of (.) tends to zero and is independent of y as t → t.
Hence G(Bq) is equicontinuous on Ji (i = , , . . . , s).
Step : Mon̈ch’s condition holds.
Suppose W ⊆ Bq is countable and W ⊆ co({} ∪ G(W )). We shall show that β(W ) = ,

where β is the Hausdorff MNC.
Without loss of generality, we may assume that W = {y(n)}∞n=. Since G maps Bq into an

equicontinuous family, G(W ) is equicontinuous on Ji. Hence W ⊆ co({} ∪G(W )) is also
equicontinuous on every Ji.
By (H)(ii) we have

β
({
Gy(n)(t)

}∞
n=

)
= β

({ ∑
<ti<t

U(t, ti)Ii
(
y(n)ti + φ̂ti

)}∞

n=

)

≤ M

s∑
i=

β
({
Ii
(
y(n)ti + φ̂ti

)}∞
n=

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/66
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≤ M

s∑
i=

Ki sup
–r≤θ≤

β
({
y(n)(ti + θ ) + φ̂(ti + θ )

}∞
n=

)

≤ M

s∑
i=

Ki sup
≤τi≤ti

β
({
y(n)(τi)

}∞
n=

)
. (.)

By Lemma . and from (H)(iii), (H)(iii), (H)(ii) and (H)(ii), we have that

βV
({
uy(n) (s)

}∞
n=

)
≤ KW (s)

[
β

({∫ b


U(b, s)f

(
s, y(n)s + φ̂s,

∫ s


h
(
s, τ , y(n)τ + φ̂τ

)
dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)
ds

}∞

n=

)
+ β

({ s∑
i=

U(b, ti)Ii
(
y(n)ti + φ̂ti

)}∞

n=

)]

≤ KW (s)
[
M

∫ b


η(s)

[
sup

–r≤θ≤
β
({
y(n)(s + θ ) + φ̂(s + θ )

}∞
n=

)

+ β

({∫ s


h
(
s, τ , y(n)τ + φ̂τ

)
dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

}∞

n=

)]
ds

+M

s∑
i=

Ki sup
–r≤θ≤

β
({
y(n)(ti + θ ) + φ̂(ti + θ )

}∞
n=

)]

≤ KW (s)
[
M

∫ b


η(s) sup

≤τ≤s
β
({
y(n)(τ )

}∞
n=

)
ds

+ M

∫ b


η(s)β

({∫ s


h
(
s, τ , y(n)τ + φ̂τ

)
dτ

}∞

n=

)
ds

+ M

∫ b


η(s)β

({∫ s


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

}∞

n=

)
ds

+M

s∑
i=

Ki sup
≤τi≤ti

β
({
y(n)(τi)

}∞
n=

)]

≤ KW (s)
[
M

∫ b


η(s) sup

≤τ≤s
β
({
y(n)(τ )

}∞
n=

)
ds

+ M

∫ b


η(s)

(
ζ * + γ *) sup

≤μ≤τ

β
({
y(n)(μ)

}∞
n=

)
ds

+M

s∑
i=

Ki sup
≤τi≤ti

β
({
y(n)(τi)

}∞
n=

)]
. (.)

This implies that

β
({
Gy(n)(t)

}∞
n=

)
≤ β

({∫ t


U(t, s)f

(
s, y(n)s + φ̂s,

∫ s


h
(
s, τ , y(n)τ + φ̂τ

)
dτ ,

∫ b


k
(
s, τ , y(n)τ + φ̂τ

)
dτ

)
ds

}∞

n=

)
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+ β

({∫ t


U(t, s)Buy(n) (s)ds

}∞

n=

)

≤ M

∫ b


η(s) sup

≤τ≤s
β
({
y(n)(τ )

}∞
n=

)
ds

+ M

∫ b


η(s)

(
ζ * + γ *) sup

≤μ≤τ

β
({
y(n)(μ)

}∞
n=

)
ds

+ MM

∫ b


βV

({
uy(n) (s)

}∞
n=

)
ds

≤ [
 + 

(
ζ * + γ *)]M

∫ b


η(s) sup

≤τ≤s
β
({
y(n)(τ )

}∞
n=

)
ds

+
[
 + 

(
ζ * + γ *)]M

M

(∫ b


KW (s)ds

)(∫ b


η(s) sup

≤τ≤s
β
({
y(n)(τ )

}∞
n=

))

+ M
M

s∑
i=

Ki sup
≤τi≤ti

β
({
y(n)(τi)

}∞
n=

)
. (.)

From (.) and (.) we obtain that

β
({
Gy(n)(t)

}∞
n=

)
≤ β

({
Gy(n)(t)

}∞
n=

)
+ β

({
Gy(n)(t)

}∞
n=

)
≤ M

s∑
i=

Ki sup
≤τi≤ti

β
({
y(n)(τi)

}∞
n=

)

+
([

 + 
(
ζ * + γ *)]M + M

M

∫ b


KW (s)ds

)

×
∫ b


η(s) sup

≤τ≤s
β
({
y(n)(τ )

}∞
n=

)
ds

+ M
M

∫ b


KW (s)ds

( s∑
i=

Ki sup
≤τi≤ti

β
({
y(n)(τi)

}∞
n=

))
(.)

for each t ∈ J .
Since W and G(W ) are equicontinuous on every Ji, according to Lemma ., the in-

equality (.) implies that

β
({
Gy(n)

}∞
n=

)
≤

[
M

s∑
i=

Ki +
[
 +

(
ζ * + γ *)](M + M

M‖KW‖L
)‖η‖L

]
β
({
y(n)

}∞
n=

)

+
[
M

M‖KW‖L
s∑
i=

Ki

]
β
({
y(n)

}∞
n=

)

=
[(

M + M
M‖KW‖L

) s∑
i=

Ki

+
[
 + 

(
ζ * + γ *)](M + M

M‖KW‖L
)‖η‖L

]
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× β
({
y(n)

}∞
n=

)
=Nβ

({
y(n)

}∞
n=

)
.

That is, β(GW ) ≤ Nβ(W ), where N is defined in (H). Thus, fromMon̈ch’s condition, we
get that

β(W )≤ β(co
({} ∪G(W )

)
= β

(
G(W )

) ≤ Nβ(W )

sinceN < , which implies that β(W ) = . So, we have thatW is relatively compact inPC.
In the view of Lemma ., i.e., Mon̈ch’s fixed point theorem, we conclude thatG has a fixed
point y in W . Then x = y + φ̂ is a fixed point of F in PC, and thus the system (.)-(.) is
nonlocally controllable on the interval [,b]. This completes the proof. �

Here we must remark that the conditions (H)-(H) given above are at least sufficient,
because it is an open problem to prove that they are also necessary or to find an example
which points out clearly that the mentioned conditions are not necessary to get the main
result proved in this section.

4 An example
Consider the partial functional integro-differential systems with impulsive conditions of
the form

∂

∂t
z(t, ξ ) = ∂

∂ξ
z(t, ξ ) +m(ξ )u(t, ξ )

+ F
(
t, z(t – r, ξ ),

∫ t


k

(
t,w(x, ξ – r)

)
ds,

∫ b


h

(
t,w(x, ξ – r)

)
ds

)

for ξ ∈ [,π ], t ∈ [,b], t �= ti, i = , , . . . , s, (.)

z(t, ) = , t ∈ [,b], (.)

z
(
t+i , ξ

)
– z

(
t–i , ξ

)
= Ii

(
z
(
t–i , ξ

))
, ξ ∈ (,π ], i = , , . . . , s, (.)

z(ξ ) = ϕ(t, ξ ) +
∫ b


h(s) log

(
 +

∣∣x(θ , ξ )∣∣)ds, t ∈ [–r, ], ξ ∈ [,π ], (.)

where r > , Ii > , i = , , . . . , s, ϕ ∈ D = {ψ : [–r,b] × [,π ] → R, ψ is continuous
everywhere except for a countable number of points at which ψ(s–), ψ(s+) exist with
ψ(s–) = ψ(s)},  = t < t < t < · · · < ts+ = b, z(t+i ) = lim(h,ξ )→(+,ξ ) z(ti + h, ξ ), z(t–i ) =
lim(h,ξ )→(–,ξ ) z(ti + h, ξ ), B : X → X.
Let X = L[,π ] and A(t) ≡ A : X → X be defined by Aw = w′ with the domain D(A) =

{w ∈ X : w is absolutely continuous w′ ∈ X, w(ξ ) = w() = }. It is well known that A is an
infinitesimal generator of a semigroup T(t) defined by T(t)w(s) = w(t + s) for each w ∈ X.
T(t) is not a compact semigroup on X and β(T(t)D) ≤ β(D), where β is the Hausdorff
MNC. We also define the bounded linear control operator B : X → X by

(Bu)(ξ ) =m(ξ )u(ξ ) for almost every ξ ∈ [,π ].

We assume that

http://www.fixedpointtheoryandapplications.com/content/2013/1/66
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() f : [,b]×X ×X ×X → X is a continuous function defined by

f (t,x,k,h)(ξ ) = F
(
t,x(ξ , t),k(ξ , t),h(ξ , t)

)
,

k(ξ , t) =
∫ t


k

(
t,w(x, ξ – r)

)
ds,

h(ξ , t) =
∫ b


h

(
t,w(x, ξ – r)

)
ds.

We take F(t,x(ξ , t),k(ξ , t),h(ξ , t)) = C sin(x(ξ )), C is a constant. F is Lipschitz continu-
ous for the second variable. Then f satisfies the hypotheses (H) and (H) of Section .
() Ii : X → X is a continuous function for each i = , , . . . , s defined by

Ii(x)(ξ ) = Ii
(
x(ξ )

)
.

We take Ii(x)(ξ ) =
∫
[,π ] ρi(ξ , y) cos(x(y))dy, x ∈ X , φi ∈ C([,π ]× [,π ],R), for

each i = , , . . . , s. Then Ii is compact and satisfies the hypothesis (H)(i).
() g :PC([,b] : X)→ X is a continuous function defined by

g(ϕ)(ξ ) =
∫ b


h(s) log

(
 +

∣∣ϕ(s)(ξ )∣∣)ds, ϕ ∈ PC
(
[,b] : X

)

with ϕ(s)(ξ ) = z(s, ξ ). Then g is a compact operator and satisfies the hypothesis (H).
Therefore, the above partial differential system (.)-(.) can be written to the abstract

form (.)-(.) and all conditions of Theorem . are satisfied. We can conclude that the
system (.)-(.) is nonlocally controllable on the interval J .

Conclusions
In the current paper, we are focused on finding some sufficient conditions to establish
controllability results for a class of impulsive mixed-type functional integro-differential
equations with finite delay. The proof of the main theorem is based on the application of
theMon̈ch fixed point theoremwith a noncompact condition of the evolution system. An
example is also included to illustrate the technique.
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