23 research outputs found

    Properties of Antibiotic-Resistant Bacteria Isolated from Onsite Wastewater Treatment Plant in Relation to Biofilm Formation

    Get PDF
    The aim of the present study was to determine some properties of antibiotic-resistant bacterial strains isolated from onsite wastewater technology in relation to biofilm formation, e.g., autoaggregation and motility. Additionally, biosurfactant production by the isolates was also evaluated. The ability of selected strains to develop a biofilm was assessed by using the crystal violet method, which allows to indirectly quantify the attached bacterial biomass (live, dead cells, and polysaccharides as well). Obtained results showed that 19 of the analyzed strains were able to produce biofilm after 72 h of incubation. The low values of surface tension in the range between 28 and 36 mN/m were observed in the bacteria, which are not able to produce biofilm or be classified as weak biofilm producers. Among biofilm-forming strains the highest autoaggregation index was observed for Mycobacterium brumae and Bacillus alcalophilus. Noteworthy, that some strains capable of biofilm formation showed no aggregation abilities or were characterized by low autoaggregative properties. The results of visual autoaggregation assay showed no visible flocs after given time of incubation. The results from motility test demonstrated that most of the analyzed strains were motile. Noteworthy, that up to now literature data about physiology, biofilm formation, and autoaggregative capabilities of bacteria isolated from onsite wastewater technology are very limited and this paper gives the information on the antibiotic-resistant bacteria with ability to form biofilm. Thus, the present study points to develop novel bioinocula in antibiotic degradation and to reach novel biofilm-dispersing agents produced by various bacteria that can be used as disinfectants or surface-coating agents to prevent microbial surface colonization and biofilm development

    A nonspecific synergistic effect of biogenic silver nanoparticles and biosurfactant towards environmental bacteria and fungi

    Get PDF
    The present study focused on the evaluation of a nonspecific synergistic effect of biogenic silver nanoparticles (AgNPs) in combination with biosurfactants against environmental bacteria and fungi. The AgNPs were synthesized in the culture supernatants of the biosurfactant producer Bacillus subtilis grown in brewery effluent, molasses or Luria-Bertani media. Antibacterial activities were tested against Gram-positive and Gram-negative bacteria, while the antifungal activity was tested against phytopathogens. The interactions between biogenic AgNPs and DNA were investigated using a cryo-TEM technique. The presence of biosurfactant significantly increased the stability of biogenic AgNPs and enhanced their antimicrobial activities. The physical properties and antimicrobial activity of biogenic AgNPs were compared with chemically synthesized Ag nanoparticles. Biogenic silver nanoparticles showed a broad spectrum of activity against bacteria and fungi. They were most active against phytopathogenic fungi and Gram-positive bacteria and less active against Gramnegative bacteria. The nonspecific synergistic effect of biogenic AgNPs and biosurfactant on the phytopathogenic fungi was especially observed. In this report, the new roles of biosurfactants as a biogenic AgNPs stabilizer and enhancer of their antimicrobial properties are presented. Our results revealed that the biologically synthesized AgNPs by the biosurfactantproducing bacterium Bacillus subtilis grown on agro-industrial wastes, such as molasses and brewery effluent, could be used as a promising new nanoagent against microbes

    Nanolayers of Poly(N,N’-Dimethylaminoethyl Methacrylate) with a Star Topology and Their Antibacterial Activity

    Get PDF
    In this paper, we focus on the synthesis and characterization of novel stable nanolayers made of star methacrylate polymers. The e ect of nanolayer modification on its antibacterial properties was also studied. A covalent immobilization of star poly(N,N0-dimethylaminoethyl methacrylate) (PDMAEMA) to benzophenone functionalized glass or silicon supports was carried out via a “grafting to” approach using UV irradiation. To date, star polymer UV immobilization has never been used for this purpose. The thickness of the resulting nanolayers increased from 30 to 120 nm with the molar mass of the immobilized stars. The successful bonding of star PDMAEMA to the supports was confirmed by surface sensitive quantitative spectroscopic methods. Next, amino groups in the polymer layer were quaternized with bromoethane, and the influence of this modification on the antibacterial properties of the obtained materials was analyzed using a selected reference strain of bacteria. The resulting star nanolayer surfaces exhibited higher antimicrobial activity against Bacillus subtilis ATCC 6633 compared to that of the linear PDMAEMA analogues grafted onto a support. These promising results and the knowledge about the influence of the topology and modification of PDMAEMA layers on their properties may help in searching for new materials for antimicrobial applications in medicine

    TTC- Based Test as an Efficient Method to Determine Antibiofilm Activity of Silver Nanoparticles

    No full text
    Among metal nanoparticles, silver nanoparticles are a widely used in various life sectors such as in biomedical applications, air and water purification, food production, cosmetics, garments and in various household products. There are several methods for production of silver nanoparticles. Generally, silver nanoparticles can be prepared by chemical methods such as chemical reduction and electrochemical techniques, physical methods, and biological methods such as the use of microorganisms. The biological route of synthesis provides a great diversity in choice for its raw materials such as bacteria, algae, fungi and plants. The aim of the study was to evaluate the tetrazolium/formazan test as a method to determine antibiofilm activity of biological synthetized silver nanoparticles. In this study Bacillus subtilis grown on brewery effluent and produced biosurfactant was used for silver nanoparticles (Ag-NPs) synthesis. The culture supernatants were used in synthesis of Ag-NPs. The formation of nanoparticles accompanied by colour changes of the used reaction system was confirmed by UV-vis spectroscopy. The bacteria isolated from the biofilm of water supply system were used in the evaluation of the antibiofilm activity of biologically synthetized Ag-NPs. To compare the results the commonly used crystal violet assay (CV) for biofilm analysis was applied

    TTC- Based Test as an Efficient Method to Determine Antibiofilm Activity of Silver Nanoparticles

    No full text
    Among metal nanoparticles, silver nanoparticles are a widely used in various life sectors such as in biomedical applications, air and water purification, food production, cosmetics, garments and in various household products. There are several methods for production of silver nanoparticles. Generally, silver nanoparticles can be prepared by chemical methods such as chemical reduction and electrochemical techniques, physical methods, and biological methods such as the use of microorganisms. The biological route of synthesis provides a great diversity in choice for its raw materials such as bacteria, algae, fungi and plants. The aim of the study was to evaluate the tetrazolium/formazan test as a method to determine antibiofilm activity of biological synthetized silver nanoparticles. In this study Bacillus subtilis grown on brewery effluent and produced biosurfactant was used for silver nanoparticles (Ag-NPs) synthesis. The culture supernatants were used in synthesis of Ag-NPs. The formation of nanoparticles accompanied by colour changes of the used reaction system was confirmed by UV-vis spectroscopy. The bacteria isolated from the biofilm of water supply system were used in the evaluation of the antibiofilm activity of biologically synthetized Ag-NPs. To compare the results the commonly used crystal violet assay (CV) for biofilm analysis was applied

    The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    No full text
    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated

    Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    No full text
    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance

    The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    No full text
    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated

    Bioeffects of silver nanoparticles (AgNPs) synthesized by producer of biosurfactant Bacillus subtilis strain : in vitro cytotoxicity, antioxidant properties and metabolic activities of mammalian cells

    No full text
    The present study is focused on the evaluation of bioeffects of silver nanoparticles (AgNPs) synthesized by Bacillus subtilis strain I’-1a, the producer of iturin A lipopeptide biosurfactant. The following properties of biologically synthesized silver nanoparticles (bio-AgNPs) were evaluated: in vitro cytotoxicity, antioxidant properties, and metabolic activities of mammalian cells. As a control, chemically synthesized silver nanoparticles (chem-AgNPs) were used. In vitro, antioxidant activity of bio-AgNPs showed a significant effect on the scavenging of free radicals. Bio-AgNPs can be potent natural antioxidants and can be essential for health preservation against oxidative stress-related degenerative diseases, such as cancer. The cell viability of human skin fibroblasts NHDF was remarkably inhibited in the presence of both AgNPs. However, bio-AgNPs were more active than chem-AgNPs. In our experiment, microarrays PM-M1–PM-M4 were used to evaluate the growth of NHDF fibroblast cells in the presence of bio-AgNPs and chem-AgNPs. The NHDF fibroblast cells were more active in the presence of bio-AgNPs than in chem-AgNPs. Probably, the presence of biosurfactant produced by Bacillus subtilis I’-1a significantly increased the stability of biogenic AgNPs and enhanced their biological activities and specific interaction with human DNA. Furthermore, the evaluated biological activities were enhanced for the biosurfactant-based AgNPs

    Nachhaltige Kontrolle der Tungiasis (Sandfloherkrankung) in einem stark betroffenen Gebiet in Lagos State, Nigeria

    No full text
    The scope of this study was to apply the Biolog system to identify and characterize a Serratia strain isolated from the surface of black plastic pieces which constitute the fluidized bed filter (onsite wastewater technology, OSWT). The preliminary isolation of the strain was done in the medium with tetracycline at a 16 mg/l concentration. To characterize the isolated strain, the following Biolog methods were applied: (1) EcoPlates microplates for evaluation of physiological profiling, (2) GEN III OmniLog® ID System for identification of the isolate, and (3) phenotypic microarrays (PM) technology for evaluation of sensitivity to antibiotics (PM11 and PM12). Results were recorded using the original OmniLog® software. The Serratia strain was identified as Serratia marcescens ss marcescens with similarity index 0.569. The same identification was obtained by the 16S rDNA analysis. PM analysis showed an enhancement of phenotype (resistance or growth) of this strain to 35 antibiotics. The loss of phenotype (sensitivity or non-growth) was observed only for 5 antibiotics: lomefloxacin (0.4 µg/ml), enoxacin (0.9 µg/ml), nalidixic acid (18.0 µg/ml), paromomycin (25.0 µg/ml) and novobiocin (1100 µg/ml). This study acknowledges that the methods proposed by the Biolog system allow correct and complete identification and characterization of the microbes isolated from different environments. Phenotypic microarrays could be successfully used as a new tool for identification of the multi-antibiotic resistance of bacteria and for determination of the minimal inhibition concentrations (MIC)
    corecore