47,758 research outputs found

    Origin of Electric Field Induced Magnetization in Multiferroic HoMnO3

    Full text link
    We have performed polarized and unpolarized small angle neutron scattering experiments on single crystals of HoMnO3 and have found that an increase in magnetic scattering at low momentum transfers begins upon cooling through temperatures close to the spin reorientation transition at TSR ~ 40 K. We attribute the increase to an uncompensated magnetization arising within antiferromagnetic domain walls. Polarized neutron scattering experiments performed while applying an electric field show that the field suppresses magnetic scattering below T ~ 50 K, indicating that the electric field affects the magnetization via the antiferromagnetic domain walls rather than through a change to the bulk magnetic order

    Photoluminescence studies on MBE grown Co-doped ZnO thin films fabricated through ion implantation and swift heavy ion irradiation

    Get PDF
    The temperature dependant photoluminescence of the Co-doped ZnO thin films, prepared by ion implantation on the MBE grown ZnO thin films followed by swift heavy ion irradiation, were investigated. The phenomenon of negative thermal quenching (NTQ), where the photoluminescence (PL) intensity increases with temperature, in contrast to the usual behavior of decrease in intensity with temperature, has been observed. The I 3 peak and the peaks (a, b, c, d, and e), corresponding to t 2g and e g levels of the crystal field split Co d orbitals exhibit the NTQ behavior. The NTQ temperature range 35-45 K observed in un-doped ZnO shifts towards lower temperature with the Co doping. The increased number of dopant related and/or the vibrational/rotational resonance states with lower activation energies, from which the thermal excitation of the electrons takes place to the initial state of the PL transition, are responsible for the NTQ behavior. © 2011 Elsevier B.V. All rights reserved

    Engineering Negative Differential Conductance with the Cu(111) Surface State

    Full text link
    Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate electron tunneling from a C60-terminated tip into a Cu(111) surface. Tunneling between a C60 orbital and the Shockley surface states of copper is shown to produce negative differential conductance (NDC) contrary to conventional expectations. NDC can be tuned through barrier thickness or C60 orientation up to complete extinction. The orientation dependence of NDC is a result of a symmetry matching between the molecular tip and the surface states.Comment: 5 pages, 4 figures, 1 tabl

    Heavy quarkonium 2S states in light-front quark model

    Full text link
    We study the charmonium 2S states ψ\psi' and ηc\eta_c', and the bottomonium 2S states Υ\Upsilon' and ηb\eta_b', using the light-front quark model and the 2S state wave function of harmonic oscillator as the approximation of the 2S quarkonium wave function. The decay constants, transition form factors and masses of these mesons are calculated and compared with experimental data. Predictions of quantities such as Br(ψγηc)(\psi' \to \gamma \eta_c') are made. The 2S wave function may help us learn more about the structure of these heavy quarkonia.Comment: 5 latex pages, final version for journal publicatio

    A unifying framework for seed sensitivity and its application to subset seeds

    Get PDF
    We propose a general approach to compute the seed sensitivity, that can be applied to different definitions of seeds. It treats separately three components of the seed sensitivity problem -- a set of target alignments, an associated probability distribution, and a seed model -- that are specified by distinct finite automata. The approach is then applied to a new concept of subset seeds for which we propose an efficient automaton construction. Experimental results confirm that sensitive subset seeds can be efficiently designed using our approach, and can then be used in similarity search producing better results than ordinary spaced seeds

    Putative spin liquid in the triangle-based iridate Ba3_3IrTi2_2O9_9

    Full text link
    We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba3_3IrTi2_2O9_9, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite of strong antiferromagnetic exchange interaction of the order of 100~K, we find no hint for long-range magnetic order down to 23 mK. The magnetic specific heat data unveil the TT-linear and -squared dependences at low temperatures below 1~K. At the respective temperatures, the zero-field muon spin relaxation features a persistent spin dynamics, indicative of unconventional low-energy excitations. A comparison to the 4d4d isostructural compound Ba3_3RuTi2_2O9_9 suggests that a concerted interplay of compass-like magnetic interactions and frustrated geometry promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte

    Variability of the NGC 1333 IRAS 4A Outflow: Molecular Hydrogen and Silicon Monoxide Images

    Get PDF
    The NGC 1333 region was observed in the H2 1-0 S(1) line. The H2 images cover a 5' x 7' region around IRAS 4. Numerous H2 emission features were detected. The northeast-southwest bipolar outflow driven by IRAS 4A was studied by combining the H2 images with SiO maps published previously. The SiO-H2 outflows are continuous on the southwestern side but show a gap on the northeastern side. The southwestern outflow lobe curves smoothly, and the position angle increases with the distance from the driving source. The base and the outer tip of the northeastern outflow lobe are located at positions opposite to the corresponding parts of the southwestern lobe. This point-symmetry suggests that the outflow axis may be drifting or precessing clockwise in the plane of the sky and that the cause of the axis drift may be intrinsic to the outflow engine. The axis drift model is supported by the asymmetric lateral intensity profile of the SiO outflow. The axis drift rate is about 0.011 deg yr-1. The middle part of the northeastern outflow does not exactly follow the point symmetry because of the superposition of two different kinds of directional variability: the axis drift of the driving source and the deflection by a dense core. The axis drift model provides a good explanation for the large deflection angle of the northeastern outflow. Other H2 emission features around the IRAS 4 region are discussed briefly. Some of them are newly found outflows, and some are associated with outflows already known before
    corecore