67,173 research outputs found
Lower bounds to energy eigenvalues for the stark effect in a rigid rotator
Lower bounds to energy eigenvalues for rigid rotator in electric field Stark effect calculation - Schroedinger equatio
Affine maps of density matrices
For quantum systems described by finite matrices, linear and affine maps of
matrices are shown to provide equivalent descriptions of evolution of density
matrices for a subsystem caused by unitary Hamiltonian evolution in a larger
system; an affine map can be replaced by a linear map, and a linear map can be
replaced by an affine map. There may be significant advantage in using an
affine map. The linear map is generally not completely positive, but the linear
part of an equivalent affine map can be chosen to be completely positive and
related in the simplest possible way to the unitary Hamiltonian evolution in
the larger system.Comment: 4 pages, title changed, sentence added, reference update
Prediction of airfoil stall using Navier-Stokes equations in streamline coordinates
A Navier-Stokes procedure to calculate the flow about an airfoil at incidence was developed. The parabolized equations are solved in the streamline coordinates generated for an arbitrary airfoil shape using conformal mapping. A modified k-epsilon turbulence model is applied in the entire domain, but the eddy viscosity in the laminar region is suppressed artificially to simulate the region correctly. The procedure was applied to airfoils at various angles of attack, and the results are quite satisfactory for both laminar and turbulent flows. It is shown that the present choice of the coordinate system reduces the error due to numerical diffusion, and that the lift is accurately predicted for a wide range of incidence
Mechanical properties of Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6) metallic glass matrix particulate composites
To increase the toughness of a metallic glass with the nominal composition Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6), it was used as the matrix in particulate composites reinforced with W, WC, Ta, and SiC. The composites were tested in compression and tension experiments. Compressive strain to failure increased by more than 300% compared with the unreinforced Zr_(57)Nb_5Al_(10)Cu_(15.4)Ni_(12.6), and energy to break of the tensile samples increased by more than 50%. The increase in toughness came from the particles restricting shear band propagation, promoting the generation of multiple shear bands and additional fracture surface area. There was direct evidence of viscous flow of the metallic glass matrix within the confines of the shear bands
Oral Branched-Chain Amino Acid Supplements That Reduce Brain Serotonin During Exercise in Rats Also Lower Brain Catecholamines
Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge
Classification of Radiology Reports Using Neural Attention Models
The electronic health record (EHR) contains a large amount of
multi-dimensional and unstructured clinical data of significant operational and
research value. Distinguished from previous studies, our approach embraces a
double-annotated dataset and strays away from obscure "black-box" models to
comprehensive deep learning models. In this paper, we present a novel neural
attention mechanism that not only classifies clinically important findings.
Specifically, convolutional neural networks (CNN) with attention analysis are
used to classify radiology head computed tomography reports based on five
categories that radiologists would account for in assessing acute and
communicable findings in daily practice. The experiments show that our CNN
attention models outperform non-neural models, especially when trained on a
larger dataset. Our attention analysis demonstrates the intuition behind the
classifier's decision by generating a heatmap that highlights attended terms
used by the CNN model; this is valuable when potential downstream medical
decisions are to be performed by human experts or the classifier information is
to be used in cohort construction such as for epidemiological studies
Power allocation for multiband coded OFDM systems with limited feedback
In this paper, we study the power allocation for multiband coded OFDM systems. With limited feedback, we propose an effective power allocation method across OFDM bands to maximize the throughput and achieve the quality of service target. To facilitate the proposed method, two optimization algorithms based on greedy and dynamic programming principles are discussed. The trade-off between performance and complexity is provided. Simulation results show that the proposed power allocation mechanism allows a signal to noise ratio gain of 2 dB at a goodput of 2.5 bit per second per Hz over the multiband OFDM systems with equal power allocation
Inflation, financial markets and capital formation
Capital ; Financial markets ; Inflation (Finance)
Dark matter halo response to the disk growth
We consider the sensitivity of the circular-orbit adiabatic contraction
approximation to the baryon condensation rate and the orbital structure of dark
matter halos in the CDM paradigm. Using one-dimensional hydrodynamic
simulations including the dark matter halo mass accretion history and gas
cooling, we demonstrate that the adiabatic approximation is approximately valid
even though halos and disks may assemble simultaneously. We further demonstrate
the validity of the simple approximation for CDM halos with isotropic
velocity distributions using three-dimensional N-body simulations. This result
is easily understood: an isotropic velocity distribution in a cuspy halo
requires more circular orbits than radial orbits. Conversely, the approximation
is poor in the extreme case of a radial orbit halo. It overestimates the
response a core dark matter halo, where radial orbit fraction is larger.
Because no astronomically relevant models are dominated by low-angular momentum
orbits in the vicinity of the disk and the growth time scale is never shorter
than a dynamical time, we conclude that the adiabatic contraction approximation
is useful in modeling the response of dark matter halos to the growth of a
disk.Comment: 7 pages, 6 figures, accepted for publication in MNRA
- …