88 research outputs found
Effects of the estrous cycle, pregnancy and interferon tau on expression of cyclooxygenase two (COX-2) in ovine endometrium
In sheep, the uterus produces luteolytic pulses of prostaglandin F(2α )(PGF) on Days 15 to 16 of estrous cycle to regress the corpus luteum (CL). These PGF pulses are produced by the endometrial lumenal epithelium (LE) and superficial ductal glandular epithelium (sGE) in response to binding of pituitary and/or luteal oxytocin to oxytocin receptors (OTR) and liberation of arachidonic acid, the precursor of PGF. Cyclooxygenase-one (COX-1) and COX-2 are rate-limiting enzymes in PGF synthesis, and COX-2 is the major form expressed in ovine endometrium. During pregnancy recognition, interferon tau (IFNτ), produced by the conceptus trophectoderm, acts in a paracrine manner to suppress development of the endometrial epithelial luteolytic mechanism by inhibiting transcription of estrogen receptor α (ERα) (directly) and OTR (indirectly) genes. Conflicting studies indicate that IFNτ increases, decreases or has no effect on COX-2 expression in bovine and ovine endometrial cells. In Study One, COX-2 mRNA and protein were detected solely in endometrial LE and sGE of both cyclic and pregnant ewes. During the estrous cycle, COX-2 expression increased from Days 10 to 12 and then decreased to Day 16. During early pregnancy, COX-2 expression increased from Days 10 to 12 and remained higher than in cyclic ewes. In Study Two, intrauterine infusion of recombinant ovine IFNτ in cyclic ewes from Days 11 to 16 post-estrus did not affect COX-2 expression in the endometrial epithelium. These results clearly indicate that IFNτ has no effect on expression of the COX-2 gene in the ovine endometrium. Therefore, antiluteolytic effects of IFNτ are to inhibit ERα and OTR gene transcription, thereby preventing endometrial production of luteolytic pulses of PGF. Indeed, expression of COX-2 in the endometrial epithelia as well as conceptus is likely to have a beneficial regulatory role in implantation and development of the conceptus
DANCE: Differentiable Accelerator/Network Co-Exploration
To cope with the ever-increasing computational demand of the DNN execution,
recent neural architecture search (NAS) algorithms consider hardware cost
metrics into account, such as GPU latency. To further pursue a fast, efficient
execution, DNN-specialized hardware accelerators are being designed for
multiple purposes, which far-exceeds the efficiency of the GPUs. However, those
hardware-related metrics have been proven to exhibit non-linear relationships
with the network architectures. Therefore it became a chicken-and-egg problem
to optimize the network against the accelerator, or to optimize the accelerator
against the network. In such circumstances, this work presents DANCE, a
differentiable approach towards the co-exploration of the hardware accelerator
and network architecture design. At the heart of DANCE is a differentiable
evaluator network. By modeling the hardware evaluation software with a neural
network, the relation between the accelerator architecture and the hardware
metrics becomes differentiable, allowing the search to be performed with
backpropagation. Compared to the naive existing approaches, our method performs
co-exploration in a significantly shorter time, while achieving superior
accuracy and hardware cost metrics.Comment: Accepted to DAC 202
Enabling Hard Constraints in Differentiable Neural Network and Accelerator Co-Exploration
Co-exploration of an optimal neural architecture and its hardware accelerator
is an approach of rising interest which addresses the computational cost
problem, especially in low-profile systems. The large co-exploration space is
often handled by adopting the idea of differentiable neural architecture
search. However, despite the superior search efficiency of the differentiable
co-exploration, it faces a critical challenge of not being able to
systematically satisfy hard constraints such as frame rate. To handle the hard
constraint problem of differentiable co-exploration, we propose HDX, which
searches for hard-constrained solutions without compromising the global design
objectives. By manipulating the gradients in the interest of the given hard
constraint, high-quality solutions satisfying the constraint can be obtained.Comment: publisehd at DAC'2
YAF2 promotes TP53-mediated genotoxic stress response via stabilization of PDCD5
AbstractProgrammed cell death 5 (PDCD5) plays a crucial role in TP53-mediated apoptosis, but the regulatory mechanism of PDCD5 itself during apoptosis remains obscure. We identified YY1-associated factor 2 (YAF2) as a novel PDCD5-interacting protein in a yeast two-hybrid screen for PDCD5-interacting proteins. We found that YY1-associated factor 2 (YAF2) binds to and increases PDCD5 stability by inhibiting the ubiquitin-dependent proteosomal degradation pathway. However, knocking-down of YAF2 diminishes the levels of PDCD5 protein but not the levels of PDCD5 mRNA. Upon genotoxic stress response, YAF2 promotes TP53 activation via association with PDCD5. Strikingly, YAF2 failed to promote TP53 activation in the deletion of PDCD5, whereas restoration of wild-type PDCD5WT efficiently reversed the ineffectiveness of YAF2 on TP53 activation. Conversely, PDCD5 efficiently overcame the knockdown effect of YAF2 on ET-induced TP53 activation. Finally, impaired apoptosis upon PDCD5 ablation was substantially rescued by restoration of PDCD5WT but not YAF2-interacting defective PDCD5E4D nor TP53-interacting defective PDCD5E16D mutant. Our findings uncovered an apoptotic signaling cascade linking YAF2, PDCD5, and TP53 during genotoxic stress responses
Tudor Domain Containing Protein TDRD12 Expresses at the Acrosome of Spermatids in Mouse Testis
Tdrd12 is one of tudor domain containing (Tdrd) family members. However, the expression pattern of Tdrd12 has not been well studied. To compare the expression levels of Tdrd12 in various tissues, real time-polymerase chain reaction was performed using total RNAs from liver, small intestine, heart, brain, kidney, lung, spleen, stomach, uterus, ovary, and testis. Tdrd12 mRNA was highly expressed in testis. Antibody against mouse TDRD12 were generated using amino acid residues SQRPNEKPLRLTEKKDC of TDRD12 to investigate TDRD12 localization in testis. Immunostaining assay shows that TDRD12 is mainly localized at the spermatid in the seminiferous tubules of adult testes. During postnatal development, TDRD12 is differentially expressed. TDRD12 was detected in early spermatocytes at 2 weeks and TDRD12 was localized at acrosome of the round spermatids. TDRD12 expression was not co-localized with TDRD1 which is an important component of piRNA pathway in germ cells. Our results indicate that TDRD12 may play an important role in spermatids and function as a regulator of spermatogenesis in dependent of TDRD1
VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy
Peer reviewe
INO80 function is required for mouse mammary gland development, but mutation alone may be insufficient for breast cancer
The aberrant function of ATP-dependent chromatin remodeler INO80 has been implicated in multiple types of cancers by altering chromatin architecture and gene expression; however, the underlying mechanism of the functional involvement of INO80 mutation in cancer etiology, especially in breast cancer, remains unclear. In the present study, we have performed a weighted gene co-expression network analysis (WCGNA) to investigate links between INO80 expression and breast cancer sub-classification and progression. Our analysis revealed that INO80 repression is associated with differential responsiveness of estrogen receptors (ERs) depending upon breast cancer subtype, ER networks, and increased risk of breast carcinogenesis. To determine whether INO80 loss induces breast tumors, a conditional INO80-knockout (INO80 cKO) mouse model was generated using the Cre-loxP system. Phenotypic characterization revealed that INO80 cKO led to reduced branching and length of the mammary ducts at all stages. However, the INO80 cKO mouse model had unaltered lumen morphology and failed to spontaneously induce tumorigenesis in mammary gland tissue. Therefore, our study suggests that the aberrant function of INO80 is potentially associated with breast cancer by modulating gene expression. INO80 mutation alone is insufficient for breast tumorigenesis
Neural Stem Cells Achieve and Maintain Pluripotency without Feeder Cells
Background: Differentiated cells can be reprogrammed into pluripotency by transduction of four defined transcription factors. Induced pluripotent stem cells (iPS cells) are expected to be useful for regenerative medicine as well as basic research. Recently, the report showed that mouse embryonic fibroblasts (MEF) cells are not essential for reprogramming. However, in using fibroblasts as donor cells for reprogramming, individual fibroblasts that had failed to reprogram could function as feeder cells. Methodology/Principal Finding: Here, we show that adult mouse neural stem cells (NSCs), which are not functional feeder cells, can be reprogrammed into iPS cells using defined four factors (Oct4, Sox2, Klf4, and c-Myc) under feeder-free conditions. The iPS cells, generated from NSCs expressing the Oct4-GFP reporter gene, could proliferate for more than two months (passage 20). Generated and maintained without feeder cells, these iPS cells expressed pluripotency markers (Oct4 and Nanog), the promoter regions of Oct4 and Nanog were hypomethylated, could differentiated into to all three germ layers in vitro, and formed a germline chimera. These data indicate that NSCs can achieve and maintain pluripotency under feeder-free conditions. Conclusion/Significance: This study suggested that factors secreted by feeder cells are not essential in the initial/early stages of reprogramming and for pluripotency maintenance. This technology might be useful for a human system, as
- …