240 research outputs found

    Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets

    Get PDF
    We report Raman scattering from single and ensemble CdS nanowires, nanobelts, and nanosheets. The Raman spectra of nanobelts and nanosheets are notably different from those of nanowires, exhibiting a strong enhancement of the multiphonon response. Moreover, the first-order longitudinal optical (LO) phonon energy systematically increases with increasing lateral size from nanowires to nanobelts, and to nanosheets. These results suggest that the optical phonons in the CdS nanostructures are influenced by strain, crystallinity, and exciton-LO phonon coupling.open342

    Association of factor XIII Val34Leu polymorphism and coronary artery disease: A meta-analysis

    Get PDF
    Background: Factor XIII plays an important role in the stabilization of the linkage between fibrins and in the pathophysiology of coronary artery disease (CAD). The association between factor XIII Val34Leu polymorphism and CAD risk remains controversial. Methods: We conducted a meta-analysis of 36 studies involving 26,940 cases and 34,694 controls. Subgroup analyses were performed with division of data into disease (myocardial infarction [MI], CAD without MI), age, and sex. Results: Factor XIII Val34Leu polymorphism was significantly associated with ove all CAD risk (odds ratio [OR] = 1.09, 95% confidence interval [CI] = 1.03–1.06, p = 0.004) and MI risk (OR = 1.15, 95% CI 1.07–1.25, p = 0.0003), but not with CAD without MI risk (OR = 1.00, 95% CI 0.87–1.15, p = 0.96). In the subgroup analysis by age and sex, there was no association between Val34Leu polymorphism and CAD. Conclusions: This meta-analysis found that factor XIII Val34Leu polymorphism was associated with CAD risk, especially MI, but not with CAD without MI. In addition, age and sex did not affect the relationship between factor XIII Val34Leu polymorphism and CAD risk.

    Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film

    Full text link
    Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of the magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.Comment: 24 pages, 5 figure

    A New Onset of Systemic Lupus Erythematosus Developed After Bee Venom Therapy

    Get PDF
    Lupus is a systemic autoimmune disease of an unknown origin, and systemic lupus erythematosus (SLE) can be triggered by numerous stimuli. Bee venom therapy is an alternative therapy that is believed to be effective for various kinds of arthritis. We present here a case of a 49-year-old female who experienced a new onset lupus after undergoing bee venom therapy, and this looked like a case of angioedema. The patient was successfully treated with high dose steroids and antimalarial drugs. We discuss the possibility of bee venom contributing to the development of SLE, and we suggest that such treatment should be avoided in patients with lupus

    Observation of the orbital Hall effect in a light metal Ti

    Full text link
    The orbital angular momentum is a core ingredient of orbital magnetism, spin Hall effect, giant Rashba spin splitting, orbital Edelstein effect, and spin-orbit torque. However, its experimental detection is tricky. In particular, direct detection of the orbital Hall effect remains elusive despite its importance for electrical control of magnetic nanodevices. Here we report the direct observation of the orbital Hall effect in a light metal Ti. The Kerr rotation by the accumulated orbital magnetic moment is measured at Ti surfaces, whose result agrees with theoretical calculations semiquantitatively and is supported by the orbital torque measurement in Ti-based magnetic heterostructures. The results confirm the electron orbital angular momentum as an essential dynamic degree of freedom, which may provide a novel mechanism for the electric control of magnetism. The results may also deepen the understanding of spin, valley, phonon, and magnon dynamics coupled with orbital dynamics

    Idiopathic retroperitoneal fibrosis associated with Hashimoto's thyroiditis in a patient with a single functioning kidney

    Get PDF
    AbstractRetroperitoneal fibrosis (RPF) is a rare disease characterized by the presence of fibroinflammatory tissue around the abdominal aorta and ureteral entrapment in most cases. Idiopathic RPF is frequently reported in association with autoimmune diseases; however, there have been few reports of idiopathic RPF associated with Hashimoto's thyroiditis. Here, we report a case of idiopathic RPF with Hashimoto's thyroiditis in a patient with a single functioning kidney, which was successfully treated by corticosteroid therapy and transient intraureteral stent insertion with a double-J catheter

    Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors

    Get PDF
    Chiral supramolecules have great potential for use in chiral recognition, sensing, and catalysis. Particularly, chiral supramolecular biocoordination polymers (SBCPs) provide a versatile platform for characterizing biorelated processes such as chirality transcription. Here, we selectively synthesize homochiral and heterochiral SBCPs, composed of chiral naphthalene diimide ligands and Zn ions, from enantiomeric and mixed R-ligands and S-ligands, respectively. Notably, we find that the chiral self-sorted SBCPs exhibit multifunctional properties, including photochromic, photoluminescent, photoconductive, and chemiresistive characteristics, thus can be used for various sensors. Specifically, these materials can be used for detecting hazardous amine materials due to the electron transfer from the amine to the SBCP surface and for enantioselectively sensing a chiral species naproxen due to the different binding energies with regard to their chirality. These results provide guidelines for the synthesis of chiral SBCPs and demonstrate their versatility and feasibility for use in various sensors covering photoactive, chemiresistive, and chiral sensors

    Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film

    Full text link
    Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of the magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.Comment: 24 pages, 5 figure

    Do we need colonoscopy verification in patients with fundic gland polyp?

    Get PDF
    Background/AimsThe aim of this study was to evaluate the prevalence of colorectal neoplasia in subjects with fundic gland polyps (FGPs) and the relationship between FGPs and colorectal neoplasia in Korea.MethodsWe analyzed 128 consecutive patients with FPGs who underwent colonoscopy between January 2009 and December 2013. For each case, age- (±5 years) and sex-matched controls were identified from among patients with hyperplastic polyps, gastric neoplasms, and healthy controls. Clinical characteristics were reviewed from medical records, colonoscopic findings, pathologic findings, and computed tomography images. The outcome was evaluated by comparison of advanced colonic neoplasia detection rates.ResultsOf the 128 patients, seven (5.1%) had colon cancers and seven (5.1%) had advanced adenomas. A case-control study revealed that the odds of detecting a colorectal cancer was 3.8 times greater in patients with FGPs than in the age- and sex-matched healthy controls (odds ratio [OR], 3.80; 95% confidence interval [CI], 1.09–13.24; P =0.04) and 4.1 times greater in patients with FGPs than in healthy controls over 50 years of age (OR, 4.10; 95% CI, 1.16–14.45; P =0.04). Among patients with FGPs over 50 years old, male sex (OR, 4.83; 95% CI, 1.23–18.94; P =0.02), and age (OR, 9.90; 95% CI, 1.21–81.08; P =0.03) were associated with an increased prevalence of advanced colorectal neoplasms.ConclusionsThe yield of colonoscopy in colorectal cancer patients with FGPs was substantially higher than that in average-risk subjects. Colonoscopy verification is warranted in patients with FGPs, especially in those 50 years of age or older
    corecore