494 research outputs found

    DNA Methylation and Hydroxymethylation in Primary Colon Cancer and Synchronous Hepatic Metastasis

    Get PDF
    Colon cancer is one of the most frequent solid tumor and simultaneous diagnosis of primary colon cancer and liver metastases occurs in about one fourth of cases. The current knowledge on epigenetic signatures, especially those related to hydroxymethylation in primary cancer tissue, synchronous metastasis, and blood circulating cells is lacking. This study aimed to investigate both methylcytosine (mCyt) and hydroxymethylcytosine (hmCyt) status in the DNA of individual patients from colon cancer tissue, synchronous liver metastases, and in cancer-free colon and liver tissues and leukocytes. Patients undergoing curative surgery (n= 16) were enrolled and their laboratory and clinical history data collected. The contents of mCyt and hmCyt were determined by a liquid chromatography/mass spectrometry (LC/MS/MS) method in DNA extracted from primary colon cancer, synchronous hepatic metastatic tissues and homologous cancer-free tissues, i.e., colon and liver tissues as well as leukocytes. The mCyt and hmCyt levels were compared between cancerous and cancer-free tissues, and correlations between leukocytes and colon/liver tissues for both the mCyt and hmCyt levels were evaluated. The mCyt levels were similar in primary colon cancer and liver metastasis tissues (4.69 \ub1 0.37% vs. 4.77 \ub1 0.38%, respectively,p= 0.535), and both primary and metastatic tissues were hypomethylated compared to cancer-free colon (4.98 \ub1 0.26%). The difference in the mCyt content between cancerous and cancer-free colon tissues was significantly lower in primary colon cancer (p= 0.004), but not in liver metastasis (p= 0.148). The hmCyt content was similar in primary colon cancer compared to liver metastasis (0.035%, C.I. 0.024-0.052% versus 0.035%, C.I. 0.021-0.058%, respectively,p =0.905) and markedly depleted compared to the cancer-free colon (0.081%, C.I. 0.055-0.119%) with a statistically significant difference (p< 0.05) for both comparisons. The mCyt levels showed a borderline correlation between leukocytes and colon cancer tissue (Pearson's correlation coefficient = 0.51,p= 0.052) while no correlations were detected for the hmCyt levels. In conclusion, primary colon cancer and synchronous liver metastasis tissues showed a similar epigenetic status but were significantly hypomethylated and hypohydroxymethylated as compared to homologous cancer-free colon tissues

    Vitamin D and Exercise Are Major Determinants of Natural Killer Cell Activity, Which Is Age- and Gender-Specific

    Get PDF
    BackgroundThe coronavirus-19 disease (COVID-19) pandemic reminds us of the importance of immune function, even in immunologically normal individuals. Multiple lifestyle factors are known to influence the immune function.ObjectiveThe aim was to investigate the association between NK cell activity (NKA) and multiple factors including vitamin D, physical exercise, age, and gender.MethodsThis was a cross-sectional association study using health check-up and NKA data of 2,095 subjects collected from 2016 to 2018 in a health check-up center in the Republic of Korea. NKA was measured using the interferon-γ (IFN-γ) stimulation method. The association of NKA with 25-(OH)-vitamin D (25(OH)D) and other factors was investigated by multiple logistic regression analysis.ResultsThe average age of subjects was 48.8 ± 11.6 years (52.9% of subjects were female). Among 2,095 subjects, 1,427 had normal NKA (NKA ≥ 500 pg IFN-γ/mL), while 506 had low NKA (100 ≤ NKA < 500 pg/mL), and 162 subjects had very low NKA (NKA < 100 pg/mL). Compared to men with low 25(OH)D serum level (< 20 ng/mL), vitamin D replete men (30–39.9 ng/mL) had significantly lower risk of very low NKA (OR: 0.358; 95% CI: 0.138, 0.929; P = 0.035). In women, both low exercise (OR: 0.529; 95% CI: 0.299, 0.939; P = 0.030) and medium to high exercise (OR: 0.522; 95% CI: 0.277, 0.981; P = 0.043) decreased the risk compared to lack of physical exercise. Interestingly, in men and women older than 60 years, physical exercise significantly decreased the risk. Older-age was associated with increased risk of very low NKA in men, but not in women.ConclusionPhysical exercise and vitamin D were associated with NKA in a gender- and age-dependent manner. Age was a major risk factor of very low NKA in men but not in women

    A DNA barcode library of the beetle reference collection (Insecta: Coleoptera) in the National Science Museum, Korea

    Get PDF
    AbstractColeoptera is a group of insects that are most diverse among insect resources. Although used as indicator species and applied in developing new drugs, it is difficult to identify them quickly. Since the development of a method using mitochondrial DNA information for identification, studies have been conducted in Korea to swiftly and accurately identify species. The National Science Museum of Korea (NSMK) has been collecting and morphologically identifying domestic reference insects since 2013, and building a database of DNA barcodes with digital images. The NSMK completed construction of a database of digital images and DNA barcodes of 60 beetle species in the Korean National Research Information System. A total of 179 specimens and 60 species were used for the analysis, and the averages of intraspecific and interspecific variations were 0.70±0.45% and 26.34±6.01%, respectively, with variation rates ranging from 0% to 1.45% and 9.83% to 56.23%, respectively

    Rate-Splitting Multiple Access for 6G Networks: Ten Promising Scenarios and Applications

    Full text link
    In the upcoming 6G era, multiple access (MA) will play an essential role in achieving high throughput performances required in a wide range of wireless applications. Since MA and interference management are closely related issues, the conventional MA techniques are limited in that they cannot provide near-optimal performance in universal interference regimes. Recently, rate-splitting multiple access (RSMA) has been gaining much attention. RSMA splits an individual message into two parts: a common part, decodable by every user, and a private part, decodable only by the intended user. Each user first decodes the common message and then decodes its private message by applying successive interference cancellation (SIC). By doing so, RSMA not only embraces the existing MA techniques as special cases but also provides significant performance gains by efficiently mitigating inter-user interference in a broad range of interference regimes. In this article, we first present the theoretical foundation of RSMA. Subsequently, we put forth four key benefits of RSMA: spectral efficiency, robustness, scalability, and flexibility. Upon this, we describe how RSMA can enable ten promising scenarios and applications along with future research directions to pave the way for 6G.Comment: 17 pages, 6 figures, submitted to IEEE Network Magazin

    One-carbon genetic variants and the role of MTHFD1 1958G>A in liver and colon cancer risk according to global DNA methylation

    Get PDF
    Several polymorphic gene variants within one-carbon metabolism, an essential pathway for nucleotide synthesis and methylation reactions, are related to cancer risk. An aberrant DNA methylation is a common feature in cancer but whether the link between one-carbon metabolism variants and cancer occurs through an altered DNA methylation is yet unclear. Aims of the study were to evaluate the frequency of one-carbon metabolism gene variants in hepatocellular-carcinoma, cholangiocarcinoma and colon cancer, and their relationship to cancer risk together with global DNA methylation status. Genotyping for BHMT 716A>G, DHFR 19bp ins/del, MTHFD1 1958G>A, MTHFR 677C>T, MTR 2756A>G, MTRR 66A>G, RFC1 80G>A, SHMT1 1420C>T, TCII 776C>G and TS 2rpt-3rpt was performed in 102 cancer patients and 363 cancer-free subjects. Methylcytosine (mCyt) content was measured by LC/MS/MS in peripheral blood mononuclear cells (PBMCs) DNA. The MTHFD1 1958AA genotype was significantly less frequent among cancer patients as compared to controls (p = 0.007) and related to 63% reduction of overall cancer risk (p = 0.003) and 75% of colon cancer risk (p = 0.006). When considering PBMCs mCyt content, carriers of the MTHFD1 1958GG genotype showed a lower DNA methylation as compared to carriers of the A allele (p = 0.048). No differences were highlighted by evaluating a possible relationship between the other polymorphisms analyzed with cancer risk and DNA methylation. The MTHFD1 1958AA genotype is linked to a significantly reduced cancer risk. The 1958GG genotype is associated to PBMCs DNA hypomethylation as compared to the A allele carriership that may exert a protective effect for cancer risk by preserving from DNA hypomethylation

    Tet1 Is Dispensable for Maintaining Pluripotency and Its Loss Is Compatible with Embryonic and Postnatal Development

    Get PDF
    SummaryThe Tet family of enzymes (Tet1/2/3) converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Mouse embryonic stem cells (mESCs) highly express Tet1 and have an elevated level of 5hmC. Tet1 has been implicated in ESC maintenance and lineage specification in vitro but its precise function in development is not well defined. To establish the role of Tet1 in pluripotency and development, we have generated Tet1 mutant mESCs and mice. Tet1−/− ESCs have reduced levels of 5hmC and subtle changes in global gene expression, and are pluripotent and support development of live-born mice in tetraploid complementation assay, but display skewed differentiation toward trophectoderm in vitro. Tet1 mutant mice are viable, fertile, and grossly normal, though some mutant mice have a slightly smaller body size at birth. Our data suggest that Tet1 loss leading to a partial reduction in 5hmC levels does not affect pluripotency in ESCs and is compatible with embryonic and postnatal development

    real world efficacy and safety of nebivolol in korean patients with hypertension from the benefit korea study

    Get PDF
    Objective:The efficacy and safety of nebivolol in patients with hypertension is well established, but its effect in Asian patients with essential hypertension in the real world has not been studied.Methods:Adult South Korean patients with essential hypertension, with or without comorbidities, were

    Temporal Trends of Emergency Department Visits of Patients with Atrial Fibrillation:A Nationwide Population-Based Study

    Get PDF
    The question of list decoding error-correcting codes over finite fields (under the Hamming metric) has been widely studied in recent years. Motivated by the similar discrete linear structure of linear codes and point lattices in R N, and their many shared applications across complexity theory, cryptography, and coding theory, we initiate the study of list decoding for lattices. Namely: for a lattice L ⊆ R N, given a target vector r ∈ R N and a distance parameter d, output the set of all lattice points w ∈ L that are within distance d of r. In this work we focus on combinatorial and algorithmic questions related to list decoding for the well-studied family of Barnes-Wall lattices. Our main contributions are twofold: 1. We give tight (up to polynomials) combinatorial bounds on the worst-case list size, showing it to be polynomial in the lattice dimension for any error radius bounded away from the lattice’s minimum distance (in the Euclidean norm). 2. Building on the unique decoding algorithm of Micciancio and Nicolosi (ISIT ’08), we give a list-decoding algorithm that runs in time polynomial in the lattice dimension and worst-case list size, for any error radius. Moreover, our algorithm is highly parallelizable, and with sufficiently many processors can run in parallel time only poly-logarithmic in the lattice dimension. In particular, our results imply a polynomial-time list-decoding algorithm for any error radius bounded away from the minimum distance, thus beating a typical barrier for natural error-correcting codes posed by the Johnson radius

    Effect of High Glucose on MUC5B expression in Human Airway Epithelial Cells

    Get PDF
    Objectives Excessive production of mucus results in plugging of the airway tract, which can increase morbidity and mortality in affected patients. In patients with diabetes, inflammatory airway disease appears with more frequent relapse and longer duration of symptoms. However, the effects of high glucose (HG) on the secretion of mucin in inflammatory respiratory diseases are not clear. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of HG on MUC5B expression in human airway epithelial cells. Methods The effect and signaling pathway of HG on MUC5B expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with specific inhibitors and small interfering RNA. Results HG increased MUC5B expression and epidermal growth factor receptor (EGFR) expression, and activated the phosphorylation of EGFR and p38 mitogen-activated protein kinase (MAPK). Pretreatment with EGFR inhibitor significantly attenuated the HG-induced phosphorylation of p38 MAPK, and pretreatments with p38 inhibitor or EGFR inhibitor significantly attenuated HG-induced MUC5B expression. In addition, knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked HG-induced MUC5B expression. Conclusion These findings suggest that HG induces MUC5B expression via the sequential activations of the EGFR/p38 MAPK signaling pathway in human airway epithelial cells
    • …
    corecore