21,660 research outputs found

    TeV scale mirage mediation in NMSSM

    Full text link
    We study the next-to-minimal supersymmetric standard model. We consider soft supersymmetry breaking parameters, which are induced by the mirage mediation mechanism of supersymmetry breaking. We concentrate on the mirage mediation, where the so-called mirage scale is the TeV scale. In this scenario, we can realize the up-type Higgs soft mass of O(200) GeV, while other masses such as gaugino masses and stop masses are heavy such as 1 TeV or more. Cancellation between the effective \mu-term and the down-type Higgs soft mass ameliorates the fine-tuning in the electroweak symmetry breaking even for \mu=O(500) GeV. The mixing between the doublet and singlet Higgs bosons is suppressed by (\lambda/\kappa)/tan\beta. Then the lightest doublet Higgs mass naturally reaches 125 GeV lifted by the new quartic coupling. The higgsino and singlino are light and their linear combination is the lightest superparticle.Comment: 24 pages, 24 figures, Numerical analysis is replaced with the version calculated by NMSSMTools. Comments and references are added on the suppressed doublet-singlet mixing and cases in which the 125 GeV boson is the 2nd lightest CP-even scalar. The version accepted by JHE

    Inflation with blowing-up solution of cosmological constant problem

    Get PDF
    The cosmological constant problem is how one chooses, without fine-tuning, one singular point Λeff=0\Lambda_{eff}=0 for the 4D cosmological constant. We argue that some recently discovered {\it weak self-tuning} solutions can be viewed as blowing-up this one point into a band of some parameter. These weak self-tuning solutions may have a virtue that only de Sitter space solutions are allowed outside this band, allowing an inflationary period. We adopt the hybrid inflation at the brane to exit from this inflationary phase and to enter into the standard Big Bang cosmology.Comment: LaTeX file of 20 pages including 2 eps figure

    Magnetic Excitations and Continuum of a Field-Induced Quantum Spin Liquid in α\alpha-RuCl3_3

    Full text link
    We report on terahertz spectroscopy of quantum spin dynamics in α\alpha-RuCl3_3, a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. An extended magnetic continuum develops below the structural phase transition at Ts2=62T_{s2}=62K. With the onset of a long-range magnetic order at TN=6.5T_N=6.5K, spectral weight is transferred to a well-defined magnetic excitation at ω1=2.48\hbar \omega_1 = 2.48meV, which is accompanied by a higher-energy band at ω2=6.48\hbar \omega_2 = 6.48meV. Both excitations soften in magnetic field, signaling a quantum phase transition at Bc=7B_c=7T where we find a broad continuum dominating the dynamical response. Above BcB_c, the long-range order is suppressed, and on top of the continuum, various emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of the field-induced quantum spin liquid

    LHC/ILC Interplay in SUSY Searches

    Full text link
    Combined analyses at the Large Hadron Collider and at the International Linear Collider are important to reveal precisely the new physics model as, for instance, supersymmetry. Examples are presented where ILC results as input for LHC analyses could be crucial for the identification of signals as well as of the underlying model. The synergy of both colliders leads also to rather accurate SUSY parameter determination and powerful mass constraints even if the scalar particles have masses in the multi-TeV range.Comment: 5 pages, contribution to the proceedings of EPS0

    Revisiting the chain magnetism in Sr14Cu24O41: Experimental and numerical results

    Full text link
    We study the magnetism of the hole doped CuO2 spin chains in Sr14Cu24O41 by measuring the Electron Spin Resonance (ESR) and the static magnetization M in applied magnetic fields up to 14 T. In this compound, the dimerized ground state and the charge order in the chains are well established. Our experimental data suggest that at low temperatures the Curie-like increase of M as well as the occurrence of the related ESR signal are due to a small amount of paramagnetic centers which are not extrinsic defects but rather unpaired Cu spins in the chain. These observations qualitatively confirm recent ab initio calculations of the ground state properties of the CuO2 chains in Sr14Cu24O41. Our complementary quantum statistical simulations yield that the temperature and field dependence of the magnetization can be well described by an effective Heisenberg model in which the ground state configuration is composed of spin dimers, trimers, and monomers.Comment: revised versio

    Singlet superfield extension of the minimal supersymmetric standard model with Peccei-Quinn symmetry and a light pseudoscalar Higgs boson at the LHC

    Full text link
    Motivated by the mu-problem and the axion solution to the strong CP-problem, we extend the MSSM with one more chiral singlet field XeX_e. The underlying PQ-symmetry allows only one more term XeHuHdX_e H_u H_d in the superpotential. The spectrum of the Higgs system includes a light pseudoscalar aXa_X (in addition to the standard CP-even Higgs boson), predominantly decaying to two photons: aXγγa_X \to \gamma \gamma. Both Higgs bosons might be in the range accessible to current LHC experiments.Comment: 5 pages with 3 figure

    Spin Analysis of Supersymmetric Particles

    Full text link
    The spin of supersymmetric particles can be determined at e+ee^+e^- colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e+ee^+e^- collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e+ee^+e^- collider.Comment: 39 pages, 14 figure
    corecore