6,227 research outputs found

    Gas-Filled Phospholipid Nanoparticles Conjugated with Gadolinium Play a Role as a Potential Theragnostics for MR-Guided HIFU Ablation

    Get PDF
    To develop a long-circulating theragnostics, meaning therapeutics and diagnostics for MR-guided HIFU ablation, we designed and prepared Gd-C5F12-phospholipid nanobubbles (PLNs) 30–100 nm in diameter. The biochemical and physical characterization of Gd-C5F12-PLNs were performed. Since Gd-C5F12-PLN-50 (Φ = 50 nm) and Gd-C5F12-PLN-100 (Φ = 100 nm) enhanced the hyperthermal effect of HIFU size- and concentration-dependently in a tissue-mimicking phantom, its circulation, distribution, tumor accumulation and tumor ablation were examined in tumor-bearing mice. The plasma-half life of Gd-C5F12-PLNs was longer than 1.5 hrs. Gd-C5F12-PLNs mainly accumulated in the liver and the spleen, suggesting that they are slowly secreted through the hepatobiliary pathway. Monitored by the T1 signal intensity of MR, Gd-C5F12-PLNs accumulated in tumor tissues for 8 hours in mice. HIFU with Gd-C5F12-PLN-100 showed the increased tumor ablation area as compared with HIFU alone. The results suggest that Gd-C5F12-PLNs exhibit a potential theragnostics for MR-guided HIFU ablation

    Clock Light Design Based on Sunrise and Sunset Time

    Get PDF
    We intend to develop a clock with a natural human perception of time, instead of a numerical one. Our representation of time was inspired by the difference in light during sunrise and sunset depending on the season or place and its annual recurrence. The events of sunrise, midday, and sunset, which consist our time series, was appointed a specific color based on the theory associated with color temperature, and connected with gradation. To be able to show the time information with light, we created a physical form. This clock light functions as an indirect light source and gives emotional value to time

    Nanotechnology for Early Cancer Detection

    Get PDF
    Vast numbers of studies and developments in the nanotechnology area have been conducted and many nanomaterials have been utilized to detect cancers at early stages. Nanomaterials have unique physical, optical and electrical properties that have proven to be very useful in sensing. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires and many other materials have been developed over the years, alongside the discovery of a wide range of biomarkers to lower the detection limit of cancer biomarkers. Proteins, antibody fragments, DNA fragments, and RNA fragments are the base of cancer biomarkers and have been used as targets in cancer detection and monitoring. It is highly anticipated that in the near future, we might be able to detect cancer at a very early stage, providing a much higher chance of treatment
    corecore