3,484 research outputs found
Myosin IIA-mediated forces regulate multicellular integrity during vascular sprouting
Angiogenic sprouting is a critical process involved in vascular network formation within tissues. During sprouting, tip cells and ensuing stalk cells migrate collectively into the extracellular matrix while preserving cell-cell junctions, forming patent structures that support blood flow. Although several signaling pathways have been identified as controlling sprouting, it remains unclear to what extent this process is mechanoregulated. To address this question, we investigated the role of cellular contractility in sprout morphogenesis, using a biomimetic model of angiogenesis. Three-dimensional maps of mechanical deformations generated by sprouts revealed that mainly leader cells, not stalk cells, exert contractile forces on the surrounding matrix. Surprisingly, inhibiting cellular contractility with blebbistatin did not affect the extent of cellular invasion but resulted in cell-cell dissociation primarily between tip and stalk cells. Closer examination of cell-cell junctions revealed that blebbistatin impaired adherens-junction organization, particularly between tip and stalk cells. Using CRISPR/Cas9-mediated gene editing, we further identified NMIIA as the major isoform responsible for regulating multicellularity and cell contractility during sprouting. Together, these studies reveal a critical role for NMIIA-mediated contractile forces in maintaining multicellularity during sprouting and highlight the central role of forces in regulating cell-cell adhesions during collective motility.R01 EB000262 - NIBIB NIH HHS; R01 HL115553 - NHLBI NIH HHSPublished versio
Intrinsic subtypes and bladder cancer metastasis
AbstractRecent studies demonstrated that bladder cancers can be grouped into basal and luminal molecular subtypes that possess distinct biological and clinical characteristics. Basal bladder cancers express biomarkers characteristic of cancer stem cells and epithelial-to-mesenchymal transition (EMT). Patients with basal cancers tend have more advanced stage and metastatic disease at presentation. In preclinical models basal human orthotopic xenografts are also more metastatic than luminal xenografts are, and they metastasize via an EMT-dependent mechanism. However, preclinical and clinical data suggest that basal cancers are also more sensitive to neoadjuvant chemotherapy (NAC), such that most patients with basal cancers who are aggressively managed with NAC have excellent outcomes. Importantly, luminal bladder cancers can also progress to become invasive and metastatic, but they appear to do so via mechanisms that are much less dependent on EMT and may involve help from stromal cells, particularly cancer-associated fibroblasts (CAFs). Although patients with luminal cancers do not appear to derive much clinical benefit from NAC, the luminal tumors that are infiltrated with stromal cells appear to be sensitive to anti-PDL1 antibodies and possibly other immune checkpoint inhibitors. Therefore, neoadjuvant and/or adjuvant immunotherapy may be the most effective approach in treating patients with advanced or metastatic infiltrated luminal bladder cancers
Myeloid conditioning with c-kit-targeted CAR-T cells enables donor stem cell engraftment
We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (\u3c1%-13.1%). This resulted in significant depletion of the BM c-ki
Reversible DNA i-motif to hairpin switching induced by copper(II) cations
i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(ii) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA
Influence of contrast media dose and osmolality on the diagnostic performance of contrast fractional flow reserve
Background—Contrast fractional flow reserve (cFFR) is a method for assessing functional significance of coronary stenoses, which is more accurate than resting indices and does not require adenosine. However, contrast media volume and osmolality may affect the degree of hyperemia and therefore diagnostic performance.
Methods and Results—cFFR, instantaneous wave–free ratio, distal pressure/aortic pressure at rest, and FFR were measured in 763 patients from 12 centers. We compared the diagnostic performance of cFFR between patients receiving low or iso-osmolality contrast (n=574 versus 189) and low or high contrast volume (n=341 versus 422) using FFR≤0.80 as a reference standard. The sensitivity, specificity, and overall accuracy of cFFR for the low versus iso-osmolality groups were 73%, 93%, and 85% versus 87%, 90%, and 89%, and for the low versus high contrast volume groups were 69%, 99%, and 83% versus 82%, 93%, and 88%. By receiver operating characteristics (ROC) analysis, cFFR provided better diagnostic performance than resting indices regardless of contrast osmolality and volume (P<0.001 for all groups). There was no significant difference between the area under the curve of cFFR in the low- and iso-osmolality groups (0.938 versus 0.957; P=0.40) and in the low- and high-volume groups (0.939 versus 0.949; P=0.61). Multivariable logistic regression analysis showed that neither contrast osmolality nor volume affected the overall accuracy of cFFR; however, both affected the sensitivity and specificity.
Conclusions—The overall accuracy of cFFR is greater than instantaneous wave–free ratio and distal pressure/aortic pressure and not significantly affected by contrast volume and osmolality. However, contrast volume and osmolality do affect the sensitivity and specificity of cFFR
Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1)
Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop.
Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software
Recommended from our members
Comparison of Two Aspergillus oryzae Genomes From Different Clades Reveals Independent Evolution of Alpha-Amylase Duplication, Variation in Secondary Metabolism Genes, and Differences in Primary Metabolism
Microbes (bacteria, yeasts, molds), in addition to plants and animals, were domesticated for their roles in food preservation, nutrition and flavor. Aspergillus oryzae is a domesticated filamentous fungal species traditionally used during fermentation of Asian foods and beverage, such as sake, soy sauce, and miso. To date, little is known about the extent of genome and phenotypic variation of A. oryzae isolates from different clades. Here, we used long-read Oxford Nanopore and short-read Illumina sequencing to produce a highly accurate and contiguous genome assemble of A. oryzae 14160, an industrial strain from China. To understand the relationship of this isolate, we performed phylogenetic analysis with 90 A. oryzae isolates and 1 isolate of the A. oryzae progenitor, Aspergillus flavus. This analysis showed that A. oryzae 14160 is a member of clade A, in comparison to the RIB 40 type strain, which is a member of clade F. To explore genome variation between isolates from distinct A. oryzae clades, we compared the A. oryzae 14160 genome with the complete RIB 40 genome. Our results provide evidence of independent evolution of the alpha-amylase gene duplication, which is one of the major adaptive mutations resulting from domestication. Synteny analysis revealed that both genomes have three copies of the alpha-amylase gene, but only one copy on chromosome 2 was conserved. While the RIB 40 genome had additional copies of the alpha-amylase gene on chromosomes III, and V, 14160 had a second copy on chromosome II and an third copy on chromosome VI. Additionally, we identified hundreds of lineage specific genes, and putative high impact mutations in genes involved in secondary metabolism, including several of the core biosynthetic genes. Finally, to examine the functional effects of genome variation between strains, we measured amylase activity, proteolytic activity, and growth rate on several different substrates. RIB 40 produced significantly higher levels of amylase compared to 14160 when grown on rice and starch. Accordingly, RIB 40 grew faster on rice, while 14160 grew faster on soy. Taken together, our analyses reveal substantial genome and phenotypic variation within A. oryzae
- …