1,439 research outputs found

    Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium.

    Get PDF
    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K(+) channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K(+) channels in the electrogenic transport of human ES epithelium. The identified K(+) channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K(+) transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid

    Similarities and differences among Internet gaming disorder, gambling disorder and alcohol use disorder: A focus on impulsivity and compulsivity

    Get PDF
    Background and aims: The aim of the present study was to test the impulsivities and compulsivities of behavioral addictions, including Internet gaming disorder (IGD) and gambling disorder (GD), by directly comparing them with alcohol use disorder (AUD) and a healthy control (HC) group. Methods: We enrolled male patients who were diagnosed with IGD, GD or AUD, with 15 patients per group, as well as 15 HCs. Trait impulsivity was measured using the Barratt Impulsiveness Scale version 11 (BIS-11). The stop-signal test (SST) from the Cambridge Neuro-psychological Test Automated Battery (CANTAB) was used to assess the patients’ abilities to inhibit prepotent responses. Compulsivity was measured using the intra–extra dimensional set shift (IED) test from the CANTAB. The Trail Making Test (TMT) was also used in this study. Results: The IGD and AUD groups scored significantly higher on the BIS-11 as a whole than did the HC group (p = 0.001 and p = 0.001, respectively). The IGD and AUD groups also scored significantly higher on the BIS-11 as a whole than did the GD group (p = 0.006 and p = 0.001, respectively). In addition, the GD group made significantly more errors (p = 0.017 and p = 0.022, respectively) and more individuals failed to achieve criterion on the IED test compared with the IGD and HC groups (p = 0.018 and p = 0.017, respectively). Discussion: These findings may aid in the understanding of not only the differences in categorical aspects between individuals with IGD and GD but also in impulsivity–compulsivity dimensional domains. Conclusion: Additional studies are needed to elucidate the neurocognitive characteristics of behavioral addictive disorders in terms of impulsivity and compulsivity

    Vaccinia-Related Kinase 2 Mediates Accumulation of Polyglutamine Aggregates via Negative Regulation of the Chaperonin TRiC

    Get PDF
    Misfolding of proteins containing abnormal expansions of polyglutamine (polyQ) repeats is associated with cytotoxicity in several neurodegenerative disorders, including Huntington's disease. Recently, the eukaryotic chaperonin TRiC hetero-oligomeric complex has been shown to play an important role in protecting cells against the accumulation of misfolded polyQ protein aggregates. It is essential to elucidate how TRiC function is regulated to better understand the pathological mechanism of polyQ aggregation. Here, we propose that vaccinia-related kinase 2 (VRK2) is a critical enzyme that negatively regulates TRiC. In mammalian cells, overexpression of wild-type VRK2 decreased endogenous TRiC protein levels by promoting TRiC ubiquitination, but a VRK2 kinase-dead mutant did not. Interestingly, VRK2-mediated downregulation of TRiC increased aggregate formation of a polyQ-expanded huntingtin fragment. This effect was ameliorated by rescue of TRiC protein levels. Notably, small interference RNA-mediated knockdown of VRK2 enhanced TRiC protein stability and decreased polyQ aggregation. The VRK2-mediated reduction of TRiC protein levels was subsequent to the recruitment of COP1 E3 ligase. Among the members of the COP1 E3 ligase complex, VRK2 interacted with RBX1 and increased E3 ligase activity on TRiC in vitro. Taken together, these results demonstrate that VRK2 is crucial to regulate the ubiquitination-proteosomal degradation of TRiC, which controls folding of polyglutamine proteins involved in Huntington's disease.open118Ysciescopu

    A Fomitopsis pinicola Jeseng Formulation Has an Antiobesity Effect and Protects against Hepatic Steatosis in Mice with High-Fat Diet-Induced Obesity

    Get PDF
    This study investigated the antiobesity effect of an extract of the Fomitopsis pinicola Jeseng-containing formulation (FAVA), which is a combination of four natural components: Fomitopsis pinicola Jeseng; Acanthopanax senticosus; Viscum album coloratum; and Allium tuberosum. High-fat diet-(HFD-) fedmale C57BL/6J mice were treated with FAVA (200 mg/kg/day) for 12 weeks to monitor the antiobesity effect and amelioration of nonalcoholic fatty liver diseases (NAFLD). Body and white adipose tissue (WAT) weights were reduced in FAVA-treated mice, and a histological examination showed an amelioration of fatty liver in FAVA-treated mice without decreasing food consumption. Additionally, FAVA reduced serumlipid profiles, leptin, and insulin levels compared with the HFD control group. The FAVA extract suppressed lipogenic mRNA expression levels from WAT concomitantly with the cholesterol biosynthesis level in the liver. These results demonstrate the inhibitory effects of FAVA on obesity and NAFLD in the diet-induced obese (DIO) mouse model. Therefore, FAVA may be an effective therapeutic candidate for treating obesity and fatty liver caused by a high-fat diet.110Nsciescopu
    corecore