81 research outputs found

    Pituitary Adenoma Presenting as Cranial Nerve III Palsy and Hemifacial Pain

    Get PDF
    Pituitary adenomas are common neoplasms arising from the pituitary adenohypophyseal cell. They can be classified by cell type, size and as nonfunctioning or functioning based on the secretion of pituitary hormones. Of these, approximately 48% are macroadenomas (\u3e10 mm) and approximately 53% are prolactinomas. For how common these adenomas are, only 1 of 1100 persons manifest clinical symptoms1 rendering detection and clinical management challenging. Non-functioning adenomas are slow growing like most pituitary adenomas and are usually detected due to their mass effect on neighboring structures.2 The majority of the reported symptoms as a results of these mass effects are visual field defects and headaches.3 This is usually due to a superior expansion and thus compression to the optic chiasm. In rare instances, inferior expansion, and or cranial nerve palsies have been reported.4 We present the case of an 80-year-old patient with a pituitary macroadenoma with cavernous sinus extension who presented with CN III palsy and hemifacial pain

    Leaf Foliar Absorption in Pentagramma triangularis and Polypodium californicum

    Get PDF
    In Riparian and moist zones of the Santa Monica Mountains of Southern California, ferns flourish. However, the Mediterranean climate they live in is subject to drought, and the area is currently facing the worst drought it has ever seen. With little moisture in the ground and streams drying up, these ferns are running out of sources of water. However, being on the coast, the area is subject to fog nightly. This research was done to see if ferns can do leaf foliar absorption, getting their water source from the air rather than the ground. We hypothesized that ferns do leaf foliar absorption, and that fern species with higher unit leaf area will absorb more water. We tested on two species of the seven that live in the area, Pentagramma triangularis and Polypodium californicum. Polypodium has rounder, larger fronds than Pentagramma, therefore we expected to see a difference if the hypothesis is correct. To do this we used a Scholander-Hammel Pressure Chamber, and standardized the xylem pressure in each fern to -10 bars. Then the ferns were submerged for thirty minutes each and the water potential was taken again. In between each step we took the mass, and at the end of the experiment we took the dry mass and surface area. We found significant results, especially when looking at the Polypodium californica, which is indicated in the graphs. This suggests that leaf foliage absorption occurs in ferns

    A Whole-Genome RNA Interference Screen Reveals a Role for Spry2 in Insulin Transcription and the Unfolded Protein Response.

    Get PDF
    Insulin production by the pancreatic β-cell is required for normal glucose homeostasis. While key transcription factors that bind to the insulin promoter are known, relatively little is known about the upstream regulators of insulin transcription. Using a whole-genome RNA interference screen, we uncovered 26 novel regulators of insulin transcription that regulate diverse processes including oxidative phosphorylation, vesicle traffic, and the unfolded protein response (UPR). We focused on Spry2-a gene implicated in human type 2 diabetes by genome-wide association studies but without a clear connection to glucose homeostasis. We showed that Spry2 is a novel UPR target and its upregulation is dependent on PERK. Knockdown of Spry2 resulted in reduced expression of Serca2, reduced endoplasmic reticulum calcium levels, and induction of the UPR. Spry2 deletion in the adult mouse β-cell caused hyperglycemia and hypoinsulinemia. Our study greatly expands the compendium of insulin promoter regulators and demonstrates a novel β-cell link between Spry2 and human diabetes

    Quenched Charmed Meson Spectra using Tadpole Improved Quark Action on Anisotropic Lattices

    Full text link
    Charmed meson charmonium spectra are studied with improved quark actions on anisotropic lattices. We measured the pseudo-scalar and vector meson dispersion relations for 4 lowest lattice momentum modes with quark mass values ranging from the strange quark to charm quark with 3 different values of gauge coupling β\beta and 4 different values of bare speed of light ν\nu. With the bare speed of light parameter ν\nu tuned in a mass-dependent way, we study the mass spectra of DD, DsD_s, ηc\eta_c, DD^{\ast}, DsD_s^{\ast} and J/ψJ/\psi mesons. The results extrapolated to the continuum limit are compared with the experiment and qualitative agreement is found.Comment: 8 pages, 2 figures, latex fil

    Glucocorticoid signaling enhances expression of glucose-sensing molecules in immature pancreatic beta-like cells derived from murine embryonic stem cells in vitro

    Get PDF
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. Here, we aim to identify small molecules that affect immature beta cells. A cell-based assay, employing pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an Insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative RT-PCR analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM D-glucose and stimulated by 17 mM D-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells

    The Distinct Metabolic Phenotype of Lung Squamous Cell Carcinoma Defines Selective Vulnerability to Glycolytic Inhibition

    Get PDF
    Adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are the two predominant subtypes of non-small cell lung cancer (NSCLC) and are distinct in their histological, molecular and clinical presentation. However, metabolic signatures specific to individual NSCLC subtypes remain unknown. Here, we perform an integrative analysis of human NSCLC tumour samples, patient-derived xenografts, murine model of NSCLC, NSCLC cell lines and The Cancer Genome Atlas (TCGA) and reveal a markedly elevated expression of the GLUT1 glucose transporter in lung SqCC, which augments glucose uptake and glycolytic flux. We show that a critical reliance on glycolysis renders lung SqCC vulnerable to glycolytic inhibition, while lung ADC exhibits significant glucose independence. Clinically, elevated GLUT1-mediated glycolysis in lung SqCC strongly correlates with high 18F-FDG uptake and poor prognosis. This previously undescribed metabolic heterogeneity of NSCLC subtypes implicates significant potential for the development of diagnostic, prognostic and targeted therapeutic strategies for lung SqCC, a cancer for which existing therapeutic options are clinically insufficient

    Glucocorticoid signaling enhances expression of glucose-sensing molecules in immature pancreatic beta-like cells derived from murine embryonic stem cells in vitro

    Get PDF
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. Here, we aim to identify small molecules that affect immature beta cells. A cell-based assay, employing pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an Insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative RT-PCR analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM D-glucose and stimulated by 17 mM D-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells

    Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes

    Get PDF
    Ribosomal surveillance pathways scan for ribosomes that are transiently paused or terminally stalled owing to structural elements in mRNAs or nascent chain sequences. Some stalls in budding yeast are sensed by the GTPase Hbs1, which loads Dom34, a catalytically inactive member of the archaeo-eukaryotic release factor 1 superfamily. Hbs1–Dom34 and the ATPase Rli1 dissociate stalled ribosomes into 40S and 60S subunits. However, the 60S subunits retain the peptidyl-tRNA nascent chains, which recruit the ribosome quality control complex that consists of Rqc1–Rqc2–Ltn1–Cdc48–Ufd1–Npl4. Nascent chains ubiquitylated by the E3 ubiquitin ligase Ltn1 are extracted from the 60S subunit by the ATPase Cdc48–Ufd1–Npl4 and presented to the 26S proteasome for degradation. Failure to degrade the nascent chains leads to protein aggregation and proteotoxic stress in yeast and neurodegeneration in mice. Despite intensive investigations on the ribosome quality control pathway, it is not known how the tRNA is hydrolysed from the ubiquitylated nascent chain before its degradation. Here we show that the Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase. Similar to classical eukaryotic release factor 1, Vms1 activity is dependent on a conserved catalytic glutamine. Evolutionary analysis indicates that yeast Vms1 is the founding member of a clade of eukaryotic release factor 1 homologues that we designate the Vms1-like release factor 1 clade

    Gammaherpesvirus-Driven Plasma Cell Differentiation Regulates Virus Reactivation from Latently Infected B Lymphocytes

    Get PDF
    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by manipulating the cellular milieu to provide a reactivation competent environment

    p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas

    Get PDF
    Squamous cell carcinoma (SCC), a malignancy arising across multiple anatomical sites, is responsible for significant cancer mortality due to insufficient therapeutic options. Here, we identify exceptional glucose reliance among SCCs dictated by hyperactive GLUT1-mediated glucose influx. Mechanistically, squamous lineage transcription factors p63 and SOX2 transactivate the intronic enhancer cluster of SLC2A1. Elevated glucose influx fuels generation of NADPH and GSH, thereby heightening the anti-oxidative capacity in SCC tumors. Systemic glucose restriction by ketogenic diet and inhibiting renal glucose reabsorption with SGLT2 inhibitor precipitate intratumoral oxidative stress and tumor growth inhibition. Furthermore, reduction of blood glucose lowers blood insulin levels, which suppresses PI3K/AKT signaling in SCC cells. Clinically, we demonstrate a robust correlation between blood glucose concentration and worse survival among SCC patients. Collectively, this study identifies the exceptional glucose reliance of SCC and suggests its candidacy as a highly vulnerable cancer type to be targeted by systemic glucose restriction
    corecore