5 research outputs found

    Improving the efficiency and effectiveness of an industrial SARS-CoV-2 diagnostic facility.

    Get PDF
    On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories

    Optimisation des stratégies pour l'évolution dirigée des protéines

    No full text
    MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Rate of Asparagine Deamidation in a Monoclonal Antibody Correlating with Hydrogen Exchange Rate at Adjacent Downstream Residues

    No full text
    Antibodies are an important class of drugs, comprising more than half of all new FDA approvals. Therapeutic antibodies must be chemically stable both in storage and <i>in vivo</i>, following administration to patients. Deamidation is a major degradation pathway for all natural and therapeutic proteins circulating in blood. Here, the linkage between deamidation propensity and structural dynamics is investigated by examining two antibodies with differing specificities. While both antibodies share a canonical asparagine-glycine (NG) motif in a structural loop, this is prone to deamidation in one of the antibodies but not the other. We found that the hydrogen-exchange rate at the adjacent two amides, often the autocatalytic nucleophiles in deamidation, correlated with the rate of degradation. This previously unreported observation was confirmed upon mutation to stabilize the deamidation lability via a generally applicable orthogonal engineering strategy presented here. We anticipate that the structural insight into chemical degradation in full-length monoclonal antibodies and the high-resolution hydrogen-exchange methodology used will have broad application across biochemical study and drug discovery and development
    corecore