131 research outputs found

    Investigating the mechanism of hadron production by measuring angular correlations of mesons with hidden strangeness in the ALICE experiment

    No full text
    Hadronization is a process described by quantum chromodynamics in which hadrons are formed from quarks and gluons. Given the non-perturbative nature of this phenomenon, it is not yet fully understood. To study this effect, we can only use phenomenological models. Such phenomenological models are characterized by the fact that the parameters used to describe them are obtained from experimental data. Initial attempts to model this process in particle collisions can be found as early as 1977, but the study of this phenomenon continues to this day. The angular correlations are a powerful tool for studying the physics of heavy ions as well as lighter systems, such as protons. The correlations of the functions Δη\Delta \eta and Δφ\Delta \varphi (the difference in pseudorapidity and azimuthal angle, respectively) are sensitive to contributions from various physical effects. The purpose of the analyses is to derive the influences of specific physical effects on the final angular correlation function. Using simulations, we have knowledge of what shapes in space (Δη\Delta \eta, Δφ\Delta \varphi ) we can expect from particular physical effects. In terms of its particle identification capabilities, the ALICE experiment is an ideal tool for performing correlation analyses for different particles. Following the extensive changes made to the ALICE experiment's detector system, it was necessary to introduce new data analysis software -- ALICE O2O^2. Along with the change in the analysis software, the format of the data and its processing have also changed. Thanks to the use of Appache Arrow flat arrays, declarative programming methods and the C++ 17 language, it allows for a reduction in the resources used and a speeding up of the analysis time. The existing research conducted in the field of angular correlations indicates that the process of hadronization of baryons may proceed differently from the process of meson production. This thesis intends to answer the question of whether mass affects the hadronization process by analyzing the angular correlations of mesons with similar mass to the lightest baryon, which is a proton

    Exclusive four pion photoproduction in ultraperipheral Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe intense photon fluxes from relativistic nuclei provide an opportunity to study photonuclear interactions in ultraperipheral collisions. The measurement of coherently photoproduced π+ππ+π\pi^+\pi^-\pi^+\pi^- final states in ultraperipheral Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV is presented for the first time. The cross section, dσ\sigma/dyy, times the branching ratio (ρπ+π+ππ\rho\rightarrow \pi^+ \pi^+ \pi^- \pi^-) is found to be 47.8±2.3 (stat.)±7.7 (syst.)47.8\pm2.3~\rm{(stat.)}\pm7.7~\rm{(syst.)} mb in the rapidity interval y<0.5|y| < 0.5. The invariant mass distribution is not well described with a single Breit-Wigner resonance. The production of two interfering resonances, ρ(1450)\rho(1450) and ρ(1700)\rho(1700), provides a good description of the data. The values of the masses (mm) and widths (Γ\Gamma) of the resonances extracted from the fit are m1=1385±14 (stat.)±3 (syst.)m_{1}=1385\pm14~\rm{(stat.)}\pm3~\rm{(syst.)} MeV/c2c^2, Γ1=431±36 (stat.)±82 (syst.)\Gamma_{1}=431\pm36~\rm{(stat.)}\pm82~\rm{(syst.)} MeV/c2c^2, m2=1663±13 (stat.)±22 (syst.)m_{2}=1663\pm13~\rm{(stat.)}\pm22~\rm{(syst.)} MeV/c2c^2 and Γ2=357±31 (stat.)±49 (syst.)\Gamma_{2}=357 \pm31~\rm{(stat.)}\pm49~\rm{(syst.)} MeV/c2c^2, respectively. The measured cross sections times the branching ratios are compared to recent theoretical predictions

    Measurement of Λ3H{}_{\Lambda}^{3}\mathrm{H} production in Pb-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe first measurement of Λ3H_{\Lambda}^{3}\mathrm{H} and Λ3H^3_ {\overline{\Lambda}}\overline{\mathrm{H}} differential production with respect to transverse momentum and centrality in Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02~TeV is presented. The Λ3H_{\Lambda}^{3}\mathrm{H} has been reconstructed via its two-charged-body decay channel, i.e., Λ3H3He+π_{\Lambda}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \pi^{-}. A Blast-Wave model fit of the pTp_{\rm T}-differential spectra of all nuclear species measured by the ALICE collaboration suggests that the Λ3H_{\Lambda}^{3}\mathrm{H} kinetic freeze-out surface is consistent with that of other nuclei. The ratio between the integrated yields of Λ3H_{\Lambda}^{3}\mathrm{H} and 3He^3\mathrm{He} is compared to predictions from the statistical hadronisation model and the coalescence model, with the latter being favoured by the presented measurements

    Particle production as a function of charged-particle flattenicity in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThis paper reports the first measurement of the transverse momentum (pTp_{\mathrm{T}}) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at s=13\sqrt{s}=13 TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, 2.8<η<5.12.8<\eta<5.1 and 3.7<η<1.7-3.7<\eta<-1.7. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases towards larger pTp_{\mathrm{T}} due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to pT=20p_{\mathrm{T}}=20 GeV/cc. The event selection requires at least one charged particle produced in the pseudorapidity interval η<1|\eta|<1. The measured pTp_{\mathrm{T}} distributions, average pTp_{\mathrm{T}}, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using PYTHIA 8 based on color strings and EPOS LHC. The modification of the pTp_{\mathrm{T}}-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate pTp_{\mathrm{T}} (2<pT<82<p_{\mathrm{T}}<8 GeV/cc), and approaches the vicinity of unity at higher pTp_{\mathrm{T}}. The results are qualitatively described by PYTHIA, and they show different behavior than those measured as a function of charged-particle multiplicity based on the V0M estimator

    Measurement of the production cross section of prompt Ξ0c baryons in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential production cross section of the promptly-produced charm-strange baryon Ξ0c (and its charge conjugate Ξ0c¯¯¯¯¯¯) is measured at midrapidity via its hadronic decay into π+Ξ− in p−Pb collisions at a centre-of-mass energy per nucleon−nucleon collision sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The Ξ0c nuclear modification factor (RpPb), calculated from the cross sections in pp and p−Pb collisions, is presented and compared with the RpPb of Λ+c baryons. The ratios between the pT-differential production cross section of Ξ0c baryons and those of D0 mesons and Λ+c baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξ0c baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p−Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pT-integrated cross section of prompt Ξ0c-baryon production at midrapidity extrapolated down to pT = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p−Pb collisions at midrapidity

    Measurement of Ω0c baryon production and branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) in pp collisions at √s = 13 TeV

    No full text
    The inclusive production of the charm-strange baryon Ω0c is measured for the first time via its semileptonic decay into Ω−e+νe at midrapidity (|y| < 0.8) in proton–proton (pp) collisions at the centre-of-mass energy √s = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) is measured to be 1.12 ± 0.22 (stat.) ± 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented

    J/ψ\psi-hadron correlations at midrapidity in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceWe report on the measurement of inclusive, non-prompt, and prompt J/ψ\psi-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity (y<0.9|y| < 0.9) in the transverse momentum ranges pT<40 GeV/cp_{\rm T} < 40~\text{GeV}/c for the J/ψ\psi and 0.15<pT<100.15 < p_{\rm T} < 10 GeV/cc and η<0.9|\eta|<0.9 for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities of Lint=34 nb1L_{\text{int}} = 34~\text{nb}^{-1} and Lint=6.9 pb1L_{\text{int}} = 6.9~\text{pb}^{-1}, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy of E=4E = 4 and 9 GeV9~\text{GeV} in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities of Lint=0.9 pb1L_{\text{int}} = 0.9~\text{pb}^{-1} and Lint=8.4 pb1L_{\text{int}} = 8.4~\text{pb}^{-1}, respectively. The results are presented as associated hadron yields per J/ψ\psi trigger as a function of the azimuthal angle difference between the associated hadrons and J/ψ\psi mesons. The integrated near-side and away-side correlated yields are also extracted as a function of the J/ψ\psi transverse momentum. The measurements are discussed in comparison to PYTHIA calculations

    Charm fragmentation fractions and cc{\rm c\overline{c}} cross section in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe total charm-quark production cross section per unit of rapidity dσ(cc)/dy\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y, and the fragmentation fractions of charm quarks to different charm-hadron species f(chc)f(\mathrm{c}\rightarrow {\rm h_{c}}), are measured for the first time in p-Pb collisions at sNN=5.02\sqrt{s_\mathrm{NN}} = 5.02 TeV at midrapidity (0.96<y<0.04-0.96<y<0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species: D0\mathrm{D}^{0}, D+\mathrm{D}^{+}, Ds+\mathrm{D}_\mathrm{s}^{+}, and J/ψ\mathrm{J/\psi} mesons, and Λc+\Lambda_\mathrm{c}^{+} and Ξc0\Xi_{\rm c}^{0} baryons. The resulting cross section is dσ(cc)/dy=219.6±6.3  (stat.)  11.8+10.5  (syst.)  2.9+7.6  (extr.)±5.4  (BR)±4.6  (lumi.)±19.5  (rapidity shape)+15.0  (Ωc0)\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y =219.6 \pm 6.3\;(\mathrm{stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm{syst.}) {\;}_{-2.9}^{+7.6}\;(\mathrm{extr.})\pm 5.4\;(\mathrm{BR})\pm 4.6\;(\mathrm{lumi.}) \pm 19.5\;(\text{rapidity shape})+15.0\;(\Omega_{\rm c}^{0}) mb, which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at s=5.02\sqrt{s} = 5.02 and 1313 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p-Pb collisions compared with e+e\mathrm{e^{+}e^{-}} and ep\mathrm{e^{-}p} collisions. The pTp_\mathrm{T}-integrated nuclear modification factor of charm quarks, RpPb(cc)=0.91±0.04  (stat.)0.09+0.08  (syst.)0.03+0.04  (extr.)±0.03  (lumi.)R_\mathrm{pPb}({\rm c\overline{c}})= 0.91 \pm 0.04\;{\rm (stat.)}{}^{+0.08}_{-0.09}\;{\rm (syst.)}{}^{+0.04}_{-0.03}\;{\rm (extr.)}{}\pm 0.03\;{\rm (lumi.)}, is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions

    Measurement of the inclusive isolated-photon production cross section in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at centre-of-momentum energy of s=13\sqrt{s}=13 TeV collected during the LHC Run 2 data-taking period. The measurement is performed by combining the measurements of the electromagnetic calorimeter EMCal and the central tracking detectors ITS and TPC, covering a pseudorapidity range of ηγ<0.67|\eta^{\gamma}|<0.67 and a transverse momentum range of 7<pTγ<2007<p_{\rm T}^{\gamma}<200 GeV/cc. The result extends to lower pTγp_{\rm T}^{\gamma} and xTγ=2pTγ/sx_{\rm T}^{\gamma} = 2p_{\rm T}^{\gamma}/\sqrt{s} ranges, the lowest xTγx_{\rm T}^{\gamma} of any isolated photon measurements to date, extending significantly those measured by the ATLAS and CMS experiments towards lower pTγp_{\rm T}^{\gamma} at the same collision energy with a small overlap between the measurements. The measurement is compared with next-to-leading order perturbative QCD calculations and the results from the ATLAS and CMS experiments as well as with measurements at other collision energies. The measurement and theory prediction are in agreement with each other within the experimental and theoretical uncertainties

    Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ0 photoproduction in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the impact-parameter dependent angular anisotropy in the decay of coherently photoproduced ρ0 mesons is presented. The ρ0 mesons are reconstructed through their decay into a pion pair. The measured anisotropy corresponds to the amplitude of the cos(2ϕ) modulation, where ϕ is the angle between the two vectors formed by the sum and the difference of the transverse momenta of the pions, respectively. The measurement was performed by the ALICE Collaboration at the LHC using data from ultraperipheral Pb−Pb collisions at a center-of-mass energy of sNN−−−√ = 5.02 TeV per nucleon pair. Different impact-parameter regions are selected by classifying the events in nuclear-breakup classes. The amplitude of the cos(2ϕ) modulation is found to increase by about one order of magnitude from large to small impact parameters. Theoretical calculations, which describe the measurement, explain the cos(2ϕ) anisotropy as the result of a quantum interference effect at the femtometer scale that arises from the ambiguity as to which of the nuclei is the source of the photon in the interaction
    corecore