3,655 research outputs found

    Temperature dependent core-level photoemission study of UNiSn

    Get PDF
    UNiSn undergoes an anomalous phase transition at T-N = 47 K, at which temperature it transforms from an antiferromagnetic metal to a paramagnetic semiconductor with an energy gap similar or equal to 70 meV. In order to investigate how the electronic structure of UNiSn changes as it crosses the transition temperature, we have used the X ray photoemission spectroscopy (XPS) technique from 20 to 70 K. According to the XPS studies, the U 4f core levels are almost temperature independent while the Ni 2p core levels and the satellite structure display a weak anomaly at T-N

    Crystallization and preliminary X-ray crystallographic analysis of SEDL

    Get PDF
    SEDL (known also as sedlin) is a 140 amino-acid protein with a putative role in endoplasmic reticulum-to-Golgi transport. Several missense mutations and deletion mutations in the SEDL gene, which result in protein truncation by frame shift, are responsible for spondyloepiphyseal dysplasia tarda, a progressive skeletal disorder. The protein is identical to MIP-2A, which was shown to interact physically with c-myc promotor-binding protein 1 (MBP-1) and relieve the regulatory role of MBP-1 as a general transcription repressor. In order to gain insights into the function of SEDL by structural analysis, the protein was overexpressed and crystallized as a first step. SEDL was overexpressed in Escherichia coli and crystallized using the hanging-drop vapour-diffusion method at 298 K. The crystals belong to the orthorhombic space group C2221, with unit-cell parameters a = 46.69, b = 101.30, c = 66.15 A. The unit cell is likely to contain one molecule of SEDL, with a crystal volume per protein mass (VM) of 2.36 A3 Da-1 and a solvent content of about 47.9% by volume. A native data set to 2.8 A resolution was obtained from a flash-cooled crystal using synchrotron radiation.open1

    Application of Quenching and Partitioning Processing to Medium Mn Steel

    Get PDF
    The present work analyzes the application of quenching and partitioning processing to medium Mn steel to obtain a new type of ultra-high-strength multiphase medium Mn steel. The selection of the quench temperature makes it possible to vary the ultimate tensile strength within a range of 500 MPa. The processing leads to low-carbon lath martensite matrix with a controlled volume fraction of retained austenite.open112731sciescopu

    Association analysis of polymorphism in KIAA1717, HUMMLC2B, DECR1 and FTO genes with meat quality traits of the Berkshire breed

    Get PDF
    Single nucleotide polymorphisms (SNPs) in KIAA1717, HUMMLC2B, DECR1, and FTO genes have been found to be associated with some pork meat quality traits. In this study, we discovered that, in addition to meat quality traits reported previously, SNPs in these genes also are significantly associated with other meat quality traits in the Berkshire breed. A total of 323 Berkshire pigs bred under the same conditions were used for meat quality evaluation and polymerase chain reaction-amplified genes with restriction endonucleases (PCR-RFLP) genotyping analyses. The association analysis of RFLP genotyping with meat quality traits revealed that the SNPs in these 4 genes have novel associations with multiple meat quality traits (p < 0.01 or p < 0.05); a SNP in KIAA1717 was associated with meat color (CIE L), backfat thickness, drip loss, water-holding capacity, and pH24hr; a SNP in HUMMLC2B was associated with chemical composition (collagen), drip loss, shear force, and pH24hr; a SNP in DECR1 was associated with meat color (CIE a and b) and backfat thickness; and a SNP in FTO was associated with meat color (CIE L, a and b), protein content, drip loss, and water-holding capacity. Taken collectively, our results suggest that these 4 SNPs may be used for marker-assisted selection as a genetic marker for meat quality traits in Berkshire pigs.Key words: Berkshire, genetic markers, meat quality, SN

    Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Luteolin is a 3',4',5,7-tetrahydroxyflavone found in various fruits and vegetables. We have shown previously that luteolin reduces HT-29 cell growth by inducing apoptosis and cell cycle arrest. The objective of this study was to examine whether luteolin downregulates the insulin-like growth factor-I receptor (IGF-IR) signaling pathway in HT-29 cells.</p> <p>Methods</p> <p>In order to assess the effects of luteolin and/or IGF-I on the IGF-IR signaling pathway, cells were cultured with or without 60 μmol/L luteolin and/or 10 nmol/L IGF-I. Cell proliferation, DNA synthesis, and IGF-IR mRNA levels were evaluated by a cell viability assay, [<sup>3</sup>H]thymidine incorporation assays, and real-time polymerase chain reaction, respectively. Western blot analyses, immunoprecipitation, and <it>in vitro </it>kinase assays were conducted to evaluate the secretion of IGF-II, the protein expression and activation of IGF-IR, and the association of the p85 subunit of phophatidylinositol-3 kinase (PI3K) with IGF-IR, the phosphorylation of Akt and extracellular signal-regulated kinase (ERK)1/2, and cell division cycle 25c (CDC25c), and PI3K activity.</p> <p>Results</p> <p>Luteolin (0 - 60 μmol/L) dose-dependently reduced the IGF-II secretion of HT-29 cells. IGF-I stimulated HT-29 cell growth but did not abrogate luteolin-induced growth inhibition. Luteolin reduced the levels of the IGF-IR precursor protein and IGF-IR transcripts. Luteolin reduced the IGF-I-induced tyrosine phosphorylation of IGF-IR and the association of p85 with IGF-IR. Additionally, luteolin inhibited the activity of PI3K activity as well as the phosphorylation of Akt, ERK1/2, and CDC25c in the presence and absence of IGF-I stimulation.</p> <p>Conclusions</p> <p>The present results demonstrate that luteolin downregulates the activation of the PI3K/Akt and ERK1/2 pathways via a reduction in IGF-IR signaling in HT-29 cells; this may be one of the mechanisms responsible for the observed luteolin-induced apoptosis and cell cycle arrest.</p

    Fibronectin-Containing Extracellular Vesicles Protect Melanocytes against Ultraviolet Radiation-Induced Cytotoxicity.

    Get PDF
    Skin melanocytes are activated by exposure to UV radiation to secrete melanin-containing melanosomes to protect the skin from UV-induced damage. Despite the continuous renewal of the epidermis, the turnover rate of melanocytes is very slow, and they survive for long periods. However, the mechanisms underlying the survival of melanocytes exposed to UV radiation are not known. Here, we investigated the role of melanocyte-derived extracellular vesicles in melanocyte survival. Network analysis of the melanocyte extracellular vesicle proteome identified the extracellular matrix component fibronectin at a central node, and the release of fibronectin-containing extracellular vesicles was increased after exposure of melanocytes to UVB radiation. Using an anti-fibronectin neutralizing antibody and specific inhibitors of extracellular vesicle secretion, we demonstrated that extracellular vesicles enriched in fibronectin were involved in melanocyte survival after UVB radiation. Furthermore, we observed that in the hyperpigmented lesions of patients with melasma, the extracellular space around melanocytes contained more fibronectin compared with normal skin, suggesting that fibronectin is involved in maintaining melanocytes in pathological conditions. Collectively, our findings suggest that melanocytes secrete fibronectin-containing extracellular vesicles to increase their survival after UVB radiation. These data provide important insight into how constantly stimulated melanocytes can be maintained in pathological conditions such as melasma.1166Ysciescopu

    Ordinary Percolation with Discontinuous Transitions

    Full text link
    Percolation on a one-dimensional lattice and fractals such as the Sierpinski gasket is typically considered to be trivial because they percolate only at full bond density. By dressing up such lattices with small-world bonds, a novel percolation transition with explosive cluster growth can emerge at a nontrivial critical point. There, the usual order parameter, describing the probability of any node to be part of the largest cluster, jumps instantly to a finite value. Here, we provide a simple example of this transition in form of a small-world network consisting of a one-dimensional lattice combined with a hierarchy of long-range bonds that reveals many features of the transition in a mathematically rigorous manner.Comment: RevTex, 5 pages, 4 eps-figs, and Mathematica Notebook as Supplement included. Final version, with several corrections and improvements. For related work, see http://www.physics.emory.edu/faculty/boettcher

    Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy

    Get PDF
    We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr3+ ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system.X1118sciescopu

    Controlling the evolution of two-dimensional electron gas states at a metal/Bi2Se3 interface

    Get PDF
    We demonstrate that the evolution of a two-dimensional electron gas system at an interface of a metal and the model topological insulator (TI) Bi2Se3 can be controlled by choosing an appropriate kind of metal element and by applying a low temperature evaporation procedure. In particular, we find that only topological surface states (TSSs) can exist at a Mn/Bi2Se3 interface, which would be useful for implementing a TI-based device with surface current channels only. The existence of TSSs alone at the interface is confirmed by angle-resolved photoemission spectroscopy (ARPES). Based on the ARPES and core-level x-ray photoemission spectroscopy measurements, we propose a cation intercalation model to explain our findings.open1156sciescopu

    Ultrafast 3d spin-echo acquisition improves gadolinium-enhanced mri signal contrast enhancement

    Get PDF
    Long scan times of 3D volumetric MR acquisitions usually necessitate ultrafast in vivo gradient-echo acquisitions, which are intrinsically susceptible to magnetic field inhomogeneities. This is especially problematic for contrast-enhanced (CE)-MRI applications, where non-negligible T 2 &amp; z.ast; effect of contrast agent deteriorates the positive signal contrast and limits the available range of MR acquisition parameters and injection doses. To overcome these shortcomings without degrading temporal resolution, ultrafast spin-echo acquisitions were implemented. Specifically, a multiplicative acceleration factor from multiple spin echoes (??32) and compressed sensing (CS) sampling (??8) allowed highly-accelerated 3D Multiple-Modulation- Multiple-Echo (MMME) acquisition. At the same time, the CE-MRI of kidney with Gd-DOTA showed significantly improved signal enhancement for CS-MMME acquisitions (??7) over that of corresponding FLASH acquisitions (??2). Increased positive contrast enhancement and highly accelerated acquisition of extended volume with reduced RF irradiations will be beneficial for oncological and nephrological applications, in which the accurate in vivo 3D quantification of contrast agent concentration is necessary with high temporal resolution.open0
    corecore