479 research outputs found

    The Construction of Double-Ended Classical Trajectories

    Full text link
    In the present paper we describe relaxation methods for constructing double-ended classical trajectories. We illustrate our approach with an application to a model anharmonic system, the Henon-Heiles problem. Trajectories for this model exhibit a number of interesting energy-time relationships that appear to be of general use in characterizing the dynamics.Comment: (12 pages, submitted to Chemical Physics Letters. Figures are too large for convenient e-mail access. they are available via anonymous ftp on willie.chem.brown.edu and reside in the directory pub/chem-ph/9407 as the compressed tar file 9407001.tar.Z. If you have difficulty retrieving the figures, please contact J. Doll ([email protected]) for assistance

    Non-minimal Wu-Yang monopole

    Get PDF
    We discuss new exact spherically symmetric static solutions to non-minimally extended Einstein-Yang-Mills equations. The obtained solution to the Yang-Mills subsystem is interpreted as a non-minimal Wu-Yang monopole solution. We focus on the analysis of two classes of the exact solutions to the gravitational field equations. Solutions of the first class belong to the Reissner-Nordstr{\"o}m type, i.e., they are characterized by horizons and by the singularity at the point of origin. The solutions of the second class are regular ones. The horizons and singularities of a new type, the non-minimal ones, are indicated.Comment: 10 pages, no figures, typos correcte

    Lockin to Weak Ferromagnetism in TbNi2B2C and ErNi2B2C

    Full text link
    This article describes a model in which ferromagnetism necessarily accompanies a spin-density-wave lockin transition in the borocarbide structure provided the commensurate phase wave vector satisfies Q = (m/n)a* with m even and n odd. The results account for the magnetic properties of TbNi2B2C, and are also possibly relevant also for those of ErNi2B2C.Comment: 4 page

    Skyrmion Excitation in Two-Dimensional Spinor Bose-Einstein Condensate

    Full text link
    We study the properties of coreless vortices(skyrmion) in spinor Bose-Einstein condensate. We find that this excitation is always energetically unstable, it always decays to an uniform spin texture. We obtain the skyrmion energy as a function of its size and position, a key quantity in understanding the decay process. We also point out that the decay rate of a skyrmion with high winding number will be slower. The interaction between skyrmions and other excitation modes are also discussed.Comment: 5 pages, 4 figures, final version published in Phys. Rev.

    Certain subclasses of multivalent functions defined by new multiplier transformations

    Full text link
    In the present paper the new multiplier transformations \mathrm{{\mathcal{J}% }}_{p}^{\delta }(\lambda ,\mu ,l) (\delta ,l\geq 0,\;\lambda \geq \mu \geq 0;\;p\in \mathrm{% }%\mathbb{N} )} of multivalent functions is defined. Making use of the operator JpÎŽ(λ,ÎŒ,l),\mathrm{% {\mathcal{J}}}_{p}^{\delta }(\lambda ,\mu ,l), two new subclasses Pλ,ÎŒ,lÎŽ(A,B;σ,p)\mathcal{% P}_{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p) and P~λ,ÎŒ,lÎŽ(A,B;σ,p)\widetilde{\mathcal{P}}% _{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p)\textbf{\ }of multivalent analytic functions are introduced and investigated in the open unit disk. Some interesting relations and characteristics such as inclusion relationships, neighborhoods, partial sums, some applications of fractional calculus and quasi-convolution properties of functions belonging to each of these subclasses Pλ,ÎŒ,lÎŽ(A,B;σ,p)\mathcal{P}_{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p) and P~λ,ÎŒ,lÎŽ(A,B;σ,p)\widetilde{\mathcal{P}}_{\lambda ,\mu ,l}^{\delta }(A,B;\sigma ,p) are investigated. Relevant connections of the definitions and results presented in this paper with those obtained in several earlier works on the subject are also pointed out

    Sparticle masses in deflected mirage mediation

    Full text link
    We discuss the sparticle mass patterns that can be realized in deflected mirage mediation scenario of supersymmetry breaking, in which the moduli, anomaly, and gauge mediations all contribute to the MSSM soft parameters. Analytic expression of low energy soft parameters and also the sfermion mass sum rules are derived, which can be used to interpret the experimentally measured sparticle masses within the framework of the most general mixed moduli-gauge-anomaly mediation. Phenomenological aspects of some specific examples are also discussed.Comment: 43 pages, 17 figures, references adde

    Dynamic nuclear polarization and spin-diffusion in non-conducting solids

    Full text link
    There has been much renewed interest in dynamic nuclear polarization (DNP), particularly in the context of solid state biomolecular NMR and more recently dissolution DNP techniques for liquids. This paper reviews the role of spin diffusion in polarizing nuclear spins and discusses the role of the spin diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in a special issue that is being published in connection with the DNP Symposium help in Nottingham in August 200

    Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates

    Full text link
    We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor, using high precision torsional oscillator and DC calorimetry techniques. Our investigation focused on the onset of superfluidity at low temperatures as the 4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel system were used to determine the superfluid density of films with transition temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor system probed the excitation spectrum of both non-superfluid and superfluid films for temperatures down to 10 mK. Both sets of measurements suggest that the critical coverage for the onset of superfluidity corresponds to a mobility edge in the chemical potential, so that the onset transition is the bosonic analog of a superconductor-insulator transition. The superfluid density measurements, however, are not in agreement with the scaling theory of an onset transition from a gapless, Bose glass phase to a superfluid. The heat capacity measurements show that the non-superfluid phase is better characterized as an insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript

    Search for Λc+→pK+π−\Lambda_c^+ \to p K^+ \pi^- and Ds+→K+K+π−D_s^+ \to K^+ K^+ \pi^- Using Genetic Programming Event Selection

    Full text link
    We apply a genetic programming technique to search for the double Cabibbo suppressed decays Λc+→pK+π−\Lambda_c^+ \to p K^+ \pi^- and Ds+→K+K+π−D_s^+ \to K^+ K^+ \pi^-. We normalize these decays to their Cabibbo favored partners and find BR(\text{BR}(\Lambda_c^+ \to p K^+ \pi^-)/BR()/\text{BR}(\Lambda_c^+ \to p K^- \pi^+)=(0.05±0.26±0.02)) = (0.05 \pm 0.26 \pm 0.02)% and BR(\text{BR}(D_s^+ \to K^+ K^+ \pi^-)/BR()/\text{BR}(D_s^+ \to K^+ K^- \pi^+)=(0.52±0.17±0.11)) = (0.52\pm 0.17\pm 0.11)% where the first errors are statistical and the second are systematic. Expressed as 90% confidence levels (CL), we find <0.46< 0.46 % and <0.78 < 0.78% respectively. This is the first successful use of genetic programming in a high energy physics data analysis.Comment: 10 page

    Measurement of the D+ and Ds+ decays into K+K-K+

    Full text link
    We present the first clear observation of the doubly Cabibbo suppressed decay D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay Ds+ --> K-K+K+. These signals have been obtained by analyzing the high statistics sample of photoproduced charm particles of the FOCUS(E831) experiment at Fermilab. We measure the following relative branching ratios: Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/- 0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) = (8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3.Comment: 10 pages, 8 figure
    • 

    corecore