8,645 research outputs found

    Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity

    Get PDF
    The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified red-crowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH, RPA1, PHAX, HNMT, HS2ST1, PPCDC, PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species

    KLEIN: A New Family of Lightweight Block Ciphers

    Get PDF
    Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact

    Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films

    Get PDF
    Ā© 2019, The Author(s), under exclusive licence to Springer Nature Limited. The performance of semiconductor devices is fundamentally governed by charge-carrier dynamics within the active materials1ā€“6. Although advances have been made towards understanding these dynamics under steady-state conditions, the importance of non-equilibrium phenomena and their effect on device performances remains elusive7,8. In fact, the ballistic propagation of carriers is generally considered to not contribute to the mechanism of photovoltaics (PVs) and light-emitting diodes, as scattering rapidly disrupts such processes after carrier generation via photon absorption or electric injection9. Here we characterize the spatiotemporal dynamics of carriers immediately after photon absorption in methylammonium lead iodide perovskite films using femtosecond transient absorption microscopy (fs-TAM) with a 10 fs temporal resolution and 10 nm spatial precision. We found that non-equilibrium carriers propagate ballistically over 150 nm within 20 fs of photon absorption. Our results suggest that in a typical perovskite PV device operating under standard conditions, a large fraction of carriers can reach the charge collection layers ballistically. The ballistic transport distance appears to be limited by energetic disorder within the materials, probably due to disorder-induced scattering. This provides a direct route towards optimization of the ballistic transport distance via improvements in materials and by minimizing the energetic disorder. Our observations reveal an unexplored regime of carrier transport in perovskites, which could have important consequences for device performance

    A Systematic Analysis of the Lepton Polarization Asymmetries in the Rare B Decay, B -> X_s\tau^+\tau^-

    Full text link
    The most general model-independent analysis of the lepton polarization asymmetries in the rare B decay, \Bstt, is presented. We present the longitudinal, normal and transverse polarization asymmetries for the Ļ„+\tau^+ and Ļ„āˆ’\tau^-, and combinations of them, as functions of the Wilson coefficients of twelve independent four-Fermi interactions, ten of them local and two nonlocal. These procedures will tell us which type of operators contributes to the process. And it will be very useful to pin down new physics systematically, once we have the experimental data with high statistics and a deviation from the Standard Model is found.Comment: 24 pages, 8 figures, LaTe

    Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis.

    Get PDF
    Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-Ī±, IFN-Ī³, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD

    THE TRANSFORMATIVE POTENTIAL OF CREATIVE ART PRACTICES IN THE CONTEXT OF INTERDISCIPLINARY RESEARCH

    Get PDF
    A growing body of literature addressing the need for educational innovations has also stressed the value of interdisciplinary approaches that incorporate art into teaching and learning. This paper aims to extend educators??? understanding of art???science interactions by presenting an empirical study that explores a unique art residency program created on the campus of a university that specializes in science and technology. The study reviews the art practices of three contemporary artists who participated in a program developed in conjunction with an interdisciplinary research project seeking ways to build an ecologically sustainable community and operated by a renewable energy resource-based economic system. Data that include observations, artist talks, and in-person interviews were collected from multiple sources during the residency to understand the distinguished processes involved in the development of individual art projects. A follow-up cross-case analysis revealed a few notable characteristics: connecting art with life through waste recycling, process-oriented practices highlighting resource circulation, and creating value using bricolage strategies. Regarding educational implications, discussions centered upon the potential transformational space identified from the creative art practices in the context of interdisciplinary research

    Lepton Polarization and Forward-Backward Asymmetries in b -> s tau+ tau-

    Get PDF
    We study the spin polarizations of both tau leptons in the decay b -> s tau+ tau-. In addition to the polarization asymmetries involving a single tau, we construct asymmetries for the case where both polarizations are simultaneously measured. We also study forward-backward asymmetries with polarized tau's. We find that a large number of asymmetries are predicted to be large, >~ 10%. This permits the measurement of all Wilson coefficients and the b-quark mass, thus allowing the standard model (SM) to be exhaustively tested. Furthermore, there are many unique signals for the presence of new physics. For example, asymmetries involving triple-product correlations are predicted to be tiny within the SM, O(10^{-2}). Their observation would be a clear signal of new physics.Comment: 21 pages, LaTeX, 4 figures (included). Paper somewhat reorganized, references greatly expanded, conclusions unchange
    • ā€¦
    corecore