824 research outputs found

    Increased Antiangiogenic Effect by Blocking CCL2-dependent Macrophages in a Rodent Glioblastoma Model: Correlation Study with Dynamic Susceptibility Contrast Perfusion MRI

    Get PDF
    When glioblastoma multiforme (GBM) is treated with anti-vascular endothelial growth factor (VEGF) agents, it commonly exhibits tumor progression due to the development of resistance, which results in a dismal survival rate. GBM tumors contain a large number of monocytes/macrophages, which have been shown to be resistant to the effects of bevacizumab. It has been reported that tumor-associated macrophages (TAMS) promote resistance to bevacizumab treatment. Therefore, it is important to target TAMs in the GBM microenvironment. TAMs, which depend on chemokine ligand 2 (CCL2) for differentiation and survival, induce the expression of proangiogenic factors such as VEGF. Dynamic susceptibility contrast (DSC)-MR imaging is an advanced technique that provides information on tumor blood volume and can potentially predict the response to several treatments, including anti-angiogenic agents such as bevacizumab, in human GBM. In this study, we used a CCL2 inhibitor, mNOX-E36, to suppress the recruitment of TAMs in a CCL2-expressing rat GBM model and investigated the effect of combination therapy with bevacizumab using DSC-MR imaging. We demonstrated that the inhibition of CCL2 blocked macrophage recruitment and angiogenesis, which resulted in decreased tumor volume and blood volume in CCL2-expressing GBM in a rat model. Our results provide direct evidence that CCL2 expression can increase the resistance to bevacizumab, which can be assessed noninvasively with the DSC-MR imaging technique. This study shows that the suppression of CCL2 can play an important role in increasing the efficacy of anti-angiogenic treatment in GBM by inhibiting the recruitment of CCL2-dependent macrophages. © The Author(s) 201

    Cancer-related Fatigue in Patients with Advanced Cancer Treated with Autonomic Nerve Pharmacopuncture

    Get PDF
    AbstractThe purpose of this study was to observe the effects of autonomic nerve pharmacopuncture (ANP) treatment on cancer-related fatigue (CRF) in patients with advanced cancer. This observational case study was conducted at the East West Cancer Center of Daejeon University's Dunsan Korean Medical Hospital. Two patients were observed. One patient was diagnosed with left thymic cancer metastatic to the left pleura. The other patient had terminal-stage cervical cancer with iliac bone and lumbar 5 metastases. We injected mountain ginseng pharmacopuncture (MGP) into acupoints alongside the spine (Hua-Tuo-Jia-Ji-Xue, EX B2). We examined the patients for CRF using the Korean version of the Revised Piper Fatigue Scale (RPFS-K), which is a self-assessment tool. The scores on the RPFS-K for both patients tended to decrease during the treatment. Laboratory findings, including hematological changes, were also checked. Liver and renal function tests showed that the treatment was safe. Although further large-population studies are necessary, this case study suggests that ANP has a favorable effect on CRF in patients with advanced cancer

    P3-238: Long term prognosis after resection for non-small cell lung cancer: Single center study

    Get PDF

    Polyclonal gammopathy related to renal bleeding in a peritoneal dialysis patient

    Get PDF
    Polyclonal gammopathy represents the diffuse activation of B cells and is usually related to inflammation or immune-related diseases. However, the mechanisms leading to polyclonal gammopathy are essentially speculative. Generally, infectious, inflammatory, or various other reactive processes may be indicated by the presence of a broad-based peak or band in the gamma region on serum protein electrophoresis results. A 15-year-old girl, who had been receiving peritoneal dialysis, presented with polyclonal gammopathy and massive gross hematuria. Renal artery embolization was performed, after which the continuous bleeding subsided and albumin-globulin dissociation resolved. This is a rare case of polyclonal gammopathy related to renal bleeding

    Discovery and Genetic Characterization of Novel Paramyxoviruses Related to the Genus Henipavirus in Crocidura Species in the Republic of Korea

    Get PDF
    Paramyxoviruses, negative-sense single-stranded RNA viruses, pose a critical threat to human public health. Currently, 78 species, 17 genera, and 4 subfamilies of paramyxoviruses are harbored by multiple natural reservoirs, including rodents, bats, birds, reptiles, and fish. Henipaviruses are critical zoonotic pathogens that cause severe acute respiratory distress and neurological diseases in humans. Using reverse transcription-polymerase chain reaction, 115 Crocidura species individuals were examined for the prevalence of paramyxovirus infections. Paramyxovirus RNA was observed in 26 (22.6%) shrews collected at five trapping sites, Republic of Korea. Herein, we report two genetically distinct novel paramyxoviruses (genus: Henipavirus): Gamak virus (GAKV) and Daeryong virus (DARV) isolated from C. lasiura and C. shantungensis, respectively. Two GAKVs and one DARV were nearly completely sequenced using next-generation sequencing. GAKV and DARV contain six genes (30 -N-P-M-F-G-L-50 ) with genome sizes of 18,460 nucleotides and 19,471 nucleotides, respectively. The phylogenetic inference demonstrated that GAKV and DARV form independent genetic lineages of Henipavirus in Crocidura species. GAKV-infected human lung epithelial cells elicited the induction of type I/III interferons, interferon-stimulated genes, and proinflammatory cytokines. In conclusion, this study contributes further understandings of the molecular prevalence, genetic characteristics and diversity, and zoonotic potential of novel paramyxoviruses in shrews

    Complete genome sequence of Mycobacterium tuberculosis K from a Korean high school outbreak, belonging to the Beijing family

    Get PDF
    Mycobacterium tuberculosis K, a member of the Beijing family, was first identified in 1999 as the most prevalent genotype in South Korea among clinical isolates of M. tuberculosis from high school outbreaks. M. tuberculosis K is an aerobic, non-motile, Gram-positive, and non-spore-forming rod-shaped bacillus. A transmission electron microscopy analysis displayed an abundance of lipid bodies in the cytosol. The genome of the M. tuberculosis K strain was sequenced using two independent sequencing methods (Sanger and Illumina). Here, we present the genomic features of the 4,385,518-bp-long complete genome sequence of M. tuberculosis K (one chromosome, no plasmid, and 65.59 % G + C content) and its annotation, which consists of 4194 genes (3447 genes with predicted functions), 48 RNA genes (3 rRNA and 45 tRNA) and 261 genes with peptide signals.
    • 

    corecore