2,556 research outputs found

    Multi-PRI Signal Processing for the Terminal Doppler Weather Radar. Part II: Range–Velocity Ambiguity Mitigation

    Get PDF
    Multiple pulse-repetition interval (multi-PRI) transmission is part of an adaptive signal transmission and processing algorithm being developed to combat range–velocity (RV) ambiguity for the Terminal Doppler Weather Radar (TDWR). In Part I of this two-part paper, an adaptive clutter filtering procedure that yields low biases in the moments estimates was presented. In this part, algorithms for simultaneously providing range-overlay protection and velocity dealiasing using multi-PRI signal transmission and processing are presented. The effectiveness of the multi-PRI RV ambiguity mitigation scheme is demonstrated using simulated and real weather radar data, with excellent results. Combined with the adaptive clutter filter, this technique will be used within the larger context of an adaptive signal transmission and processing scheme in which phase-code processing will be a complementary alternative.United States. Federal Aviation Administration (Contract F19628–00-C-0002

    Multi-PRI Signal Processing for the Terminal Doppler Weather Radar. Part I: Clutter Filtering

    Get PDF
    Multiple pulse repetition interval (multi-PRI) transmission is part of an adaptive signal transmission and processing algorithm being developed to aggressively combat range–velocity ambiguity in weather radars. In the past, operational use of multi-PRI pulse trains has been hampered due to the difficulty in clutter filtering. This paper presents finite impulse response clutter filter designs for multi-PRI signals with excellent magnitude and phase responses. These filters provide strong suppression for use on low-elevation scans and yield low biases of velocity estimates so that accurate velocity dealiasing is possible. Specifically, the filters are designed for use in the Terminal Doppler Weather Radar (TDWR) and are shown to meet base data bias requirements equivalent to the Federal Aviation Administration’s specifications for the current TDWR clutter filters. Also an adaptive filter selection algorithm is proposed that bases its decision on clutter power estimated during an initial long-PRI surveillance scan. Simulations show that this adaptive algorithm yields satisfactory biases for reflectivity, velocity, and spectral width. Implementation of such a scheme would enable automatic elimination of anomalous propagation signals and constant adjustment to evolving ground clutter conditions, an improvement over the current TDWR clutter filtering system.United States. Federal Aviation Administration (contract F19628-00-C-0002

    Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes

    Get PDF
    We examine the horizontal wavenumber spectra of horizontal velocity and potential temperature collected by aircraft above the Pacific Ocean to determine whether gravity waves, quasi-two-dimensional (Q-2-D) turbulence, or vortical modes dominate atmospheric fluctuations at scale sizes of 1–100 km and altitudes of 2–12 km. We conclude from the study of Doppler-shifting effects that Q-2-D turbulence and/or vortical modes are more prevalent than gravity waves over the ocean, except in the equatorial zone. The results are consistent with recent numerical simulations of Q-2-D turbulence, which show that the characteristic inverse cascade of energy is greatly facilitated by the presence of background rotation. Furthermore, a Stokes-parameter analysis reveals the general paucity of coherent wavelike motions, although specific cases of gravity-wave propagation are observed. Finally, a case study of a long flight segment displays a k⁻³ horizontal velocity variance spectrum at scales longer than about 100 km. A Stokes-parameter analysis indicates that these large-scale fluctuations were likely due to vortical modes rather than inertio-gravity waves.United States. National Aeronautics and Space Administration (Grant NAG1-1758)United States. National Aeronautics and Space Administration (Grant NAG1-1901

    Novel Topological Invariant in the U(1) Gauge Field Theory

    Get PDF
    Based on the decomposition of U(1) gauge potential theory and the ϕ\phi-mapping topological current theory, the three-dimensional knot invariant and a four-dimensional new topological invariant are discussed in the U(1) gauge field.Comment: 10 pages, 0 figures accepted by MPL

    Anomalous scaling of mesoscale tropospheric humidity fluctuations

    Get PDF
    Water vapor fluctuations are measured and analyzed at an unprecedented 10-m resolution throughout the troposphere. Computation of structure functions shows that specific humidity variations observed by research aircraft over the Pacific Ocean exhibit anomalous scaling from about 50 m to 100 km in horizontal range. The scaling laws show different characteristics for the marine boundary layer, the tropical free troposphere, and the extratropical free troposphere. More specifically, boundary-layer humidity fluctuations are less smooth and more stationary than those in the free troposphere, while the extratropical free tropospheric variations are less intermittent than those in the other two regions. The anomalous scaling results argue against passive advection by a spatially smooth flow (chaotic advection) at these scales.United States. National Aeronautics and Space Administration (Grant NAG1-2173)United States. National Aeronautics and Space Administration (Grant NAG1-1901

    A Neural Network Approach for Waveform Generation and Selection with Multi-Mission Radar

    Get PDF
    Nonlinear frequency modulated (NLFM) pulse compression waveforms have become a mainstream methodology for radars across multiple sectors and missions, including weather observation, target tracking, and target detection. NLFM affords the ability to generate a low-sidelobe autocorrelation function and matched filter while avoiding aggressive amplitude modulation, resulting in more power incident on the target. This capability can lead to significantly lower system design costs due to the possibility of sensitivity gains on the order of 3 dB or more compared with traditional, amplitude-modulated linear frequency modulated (LFM) waveforms. Generation of an optimal NLFM waveform, however, can be an arduous task, and may involve complex optimization and non-closed-form solutions. For a multi-mission or cognitive radar, which may utilize a wide combination of frequencies, pulse lengths, and amplitude modulations (among other factors), this could lead to an extremely large waveform table for selection. This paper takes a neural network approach to this problem by optimizing a set of over 100 waveforms spanning a wide space and using the results to interpolate the waveform possibilities to a higher resolution. A modified form of a previous NLFM method is combined with a four-hidden-layer neural network to show the integrated and peak range sidelobes of the generated waveforms across the model training space. The results are applicable to multi-mission and cognitive radars that need precise waveform specifications in rapid succession. The expected waveform generation times are addressed and quantified, and the potential applicability to multi-mission and cognitive radars is discussed

    Characterizations of tropospheric turbulence and stability layers from aircraft observations

    Get PDF
    [1] Velocity, temperature, and specific humidity data collected by aircraft at 20-Hz resolution are analyzed for stability and turbulence parameters. Over 100 vertical profiles (mostly over the ocean) with a total of over 300 km in vertical airspace sampled are used. The compiled statistics show that anisotropy in the velocity fluctuations prevail down to the smallest spatial separations measured. A partitioning of convective versus dynamical instability indicates that in the free troposphere, the ratio of shear-produced turbulence to convectively produced turbulence increases from roughly 2:1 for weak turbulence (ϵ 10⁻⁴ m² s⁻³). For the boundary layer, this ratio is close to 1:1 for weak turbulence and roughly 2:1 for strong turbulence. There is also a correlation between the strength of the vertical shear in horizontal winds and the turbulence intensity. In the free troposphere the turbulence intensity is independent of the degree of static stability, whereas in the boundary layer the turbulence intensity increases with a fall in static stability. Vertical humidity gradients correlate with static stability for strong humidity gradients, which supports the basic notion that stable layers impede vertical mixing of trace gases and aerosols. Vertical shear correlates with vertical humidity gradient, so it appears that the effect of differential advection creating tracer gradients dominates the effect of differential advection destroying tracer gradients through shear-induced turbulence.United States. National Aeronautics and Space Administration (Grant NCC1-415)United States. National Aeronautics and Space Administration (Grant NAG1-2306

    Excited Charmed Baryon Decays and Their Implications for Fragmentation Parameters

    Get PDF
    The production of the excited charmed baryon doublet Λc\Lambda_c^* via fragmentation is studied. An analysis of the subsequent hadronic decays of the doublet within the framework of heavy hadron chiral perturbation theory produces expressions for both the angular distribution of the decay products and the polarization of the final state heavy baryon in terms of various nonperturbative fragmentation parameters. Future experimental investigation of this system will determine these parameters. In addition, recent experimental results are shown to fix one of the parameters in the heavy hadron chiral Lagrangian.Comment: 23 Pages, including 6 figs., in TeX; uses harvmac.tex, epsf.tex, and tables.te

    Comment on "Reinterpreting aircraft measurement in anisotropic scaling turbulence" by Lovejoy et al. (2009)

    Get PDF
    Recently, Lovejoy et al. (2009) argued that the steep ~k−3 atmospheric kinetic energy spectrum at synoptic scales (≥1000 km) observed by aircraft is a spurious artefact of aircraft following isobars instead of isoheights. Without taking into account the earth's rotation they hypothesise that the horizontal atmospheric energy spectrum should scale as k−5/3 at all scales. We point out that the approximate k−3-spectrum at synoptic scales has been observed by a number of non-aircraft means since the 1960s and that general circulation models and other current models have successfully produced this spectrum. We also argue that the vertical movements of the aircraft are far too small to cause any strong effect on the measured spectrum at synoptic scales

    Dissociating Stimulus-Set and Response-Set in the Context of Task-Set Switching

    Get PDF
    The primary aim of the present research was to determine how stimulus-set and response-set components of task-set contribute to switch costs and conflict processing. Three experiments are described wherein participants completed an explicitly cued task-switching procedure. Experiment 1 established that task switches requiring a reconfiguration of both stimulus- and response-set incurred larger residual switch costs than task switches requiring the reconfiguration of stimulus-set alone. Between-task interference was also drastically reduced for response-set conflict compared with stimulus-set conflict. A second experiment replicated these findings and demonstrated that stimulus- and response-conflict have dissociable effects on the decision time and motor time components of total response time. Finally, a third experiment replicated Experiment 2 and demonstrated that the stimulus- and response- components of task switching and conflict processing elicit dissociable neural activity as evidence by event-related brain potentials
    corecore