5,379 research outputs found

    Atmospheric Circulation of Exoplanets

    Full text link
    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from Solar-System studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from Solar-System studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our Solar System, our guiding philosophy is that the multi-decade study of Solar-System planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.Comment: In EXOPLANETS, edited by S. Seager, to be published in the Spring of 2010 in the Space Science Series of the University of Arizona Press (Tucson, AZ) (refereed; accepted for publication

    On Signatures of Atmospheric Features in Thermal Phase Curves of Hot Jupiters

    Full text link
    Turbulence is ubiquitous in Solar System planetary atmospheres. In hot Jupiter atmospheres, the combination of moderately slow rotation and thick pressure scale height may result in dynamical weather structures with unusually large, planetary-size scales. Using equivalent-barotropic, turbulent circulation models, we illustrate how such structures can generate a variety of features in the thermal phase curves of hot Jupiters, including phase shifts and deviations from periodicity. Such features may have been spotted in the recent infrared phase curve of HD 189733b. Despite inherent difficulties with the interpretation of disk-integrated quantities, phase curves promise to offer unique constraints on the nature of the circulation regime present on hot Jupiters.Comment: 22 pages, 6 figures, 1 table, accepted for publication in Ap

    Changing Face of the Extrasolar Giant Planet, HD 209458b

    Get PDF
    High-resolution atmospheric flow simulations of the tidally-locked extrasolar giant planet, HD 209458b, show large-scale spatio-temporal variability. This is in contrast to the simple, permanent day/night (i.e., hot/cold) picture. The planet's global circulation is characterized by a polar vortex in motion around each pole and a banded structure corresponding to ~3 broad zonal (east-west) jets. For very strong jets, the circulation-induced temperature difference between moving hot and cold regions can reach up to ~1000 K, suggesting that atmospheric variability could be observed in the planet's spectral and photometric signatures.Comment: 6 pages, 1 ps figure, 2 low-res color figures (JPEG). Figure 3 updated. Contact authors for hi-res versions of color figures. Accepted for publication in ApJ

    Effects of Initial Flow on Close-In Planet Atmospheric Circulation

    Full text link
    We use a general circulation model to study the three-dimensional (3-D) flow and temperature distributions of atmospheres on tidally synchronized extrasolar planets. In this work, we focus on the sensitivity of the evolution to the initial flow state, which has not received much attention in 3-D modeling studies. We find that different initial states lead to markedly different distributions-even under the application of strong forcing (large day-night temperature difference with a short "thermal drag time") that may be representative of close-in planets. This is in contrast with the results or assumptions of many published studies. In general, coherent jets and vortices (and their associated temperature distributions) characterize the flow, and they evolve differently in time, depending on the initial condition. If the coherent structures reach a quasi- stationary state, their spatial locations still vary. The result underlines the fact that circulation models are currently unsuitable for making quantitative predictions (e.g., location and size of a "hot spot") without better constrained, and well posed, initial conditions.Comment: Accepted for publication in the Astrophysical Journal; 23 pages, 9 figures

    "Weather" Variability Of Close-in Extrasolar Giant Planets

    Get PDF
    Shallow-water numerical simulations show that the atmospheric circulation of the close-in extrasolar giant planet (EGP) HD 209458b is characterized by moving circumpolar vortices and few bands/jets (in contrast with ~10 bands/jets and absence of polar vortices on cloud-top Jupiter and Saturn). The large spatial scales of moving circulation structures on HD 209458b may generate detectable variability of the planet's atmospheric signatures. In this Letter, we generalize these results to other close-in EGPs, by noting that shallow-water dynamics is essentially specified by the values of the Rossby (Ro) and Burger (Bu) dimensionless numbers. The range of likely values of Ro (~ 0.01 - 10) and Bu (~ 1 - 200) for the atmospheric flow of known close-in EGPs indicates that their circulation should be qualitatively similar to that of HD 209458b. This results mostly from the slow rotation of these tidally-synchronized planets.Comment: 6 pages, 1 table, 1 figure. Accepted for publication in ApJ

    Hot Jupiter Variability in Eclipse Depth

    Get PDF
    Physical conditions in the atmospheres of tidally-locked, slowly-rotating hot Jupiters correspond to dynamical circulation regimes with Rhines scales and Rossby deformation radii comparable to the planetary radii. Consequently, the large spatial scales of moving atmospheric structures could generate significant photospheric variability. Here, we estimate the level of thermal infrared variability expected in successive secondary eclipse depths, according to hot Jupiter turbulent ``shallow-layer'' models. The variability, at the few percent level or more in models with strong enough winds, is within the reach of Spitzer measurements. Eclipse depth variability is thus a valuable tool to constrain the circulation regime and global wind speeds in hot Jupiter atmospheres.Comment: 13 pages, 3 figures, 2 tables, accepted for publication in ApJ Letter

    Toward Eclipse Mapping of Hot Jupiters

    Get PDF
    Recent Spitzer infrared measurements of hot Jupiter eclipses suggest that eclipse mapping techniques could be used to spatially resolve the day-side photospheric emission of these planets using partial occultations. As a first step in this direction, we simulate ingress/egress lightcurves for the three brightest known eclipsing hot Jupiters and evaluate the degree to which parameterized photospheric emission models can be distinguished from each other with repeated, noisy eclipse measurements. We find that the photometric accuracy of Spitzer is insufficient to use this tool effectively. On the other hand, the level of photospheric details that could be probed with a few JWST eclipse measurements could greatly inform hot Jupiter atmospheric modeling efforts. A JWST program focused on non-parametric eclipse map inversions for hot Jupiters should be actively considered.Comment: 32 pages, 6 figures, 3 tables, accepted for publication in Ap
    • 

    corecore