3,676 research outputs found

    Point Mutation of Hoxd12 in Mice

    Get PDF
    Purpose: Genes of the HoxD cluster play a major role in vertebrate limb development, and changes that modify the Hoxd12 locus affect other genes also, suggesting that HoxD function is coordinated by a control mechanism involving multiple genes during limb morphogenesis. In this study, mutant phenotypes were produced by treatment of mice with chemical mutagen, N-ethyl-N-nitrosourea (ENU). We analyzed mutant mice exhibiting the specific microdactyly phenotype and examined the genes affected. Materials and Methods: We focused on phenotype characteristics including size, bone formation, and digit morphology of ENU-induced microdactyly mice. The expressions of several molecules were analyzed by genome-wide screening and quantitative real-time PCR to define the affected genes. Results: We report on limb phenotypes of an ENU-induced A-to-C mutation in the Hoxd12 gene, resulting in alanine-to-serine conversion. Microdactyly mice exhibited growth defects in the zeugopod and autopod, shortening of digits, a missing tip of digit I, limb growth affected, and dramatic increases in the expressions of Fgf4 and Lmx1b. However, the expression level of Shh was not changed Hoxd12 point mutated mice. Conclusion: These results suggest that point mutation rather than the entire deletion of Hoxd12, such as in knockout and transgenic mice, causes the abnormal limb phenotype in microdactyly mice. The precise nature of the spectrum of differences requires further investigation.link_to_subscribed_fulltex

    Does the Kyphotic Change Decrease the Risk of Fall?

    Get PDF
    ObjectivesFalls are a major problem in the elderly. Age-related degeneration of the human balance system increases the risk of falls. Kyphosis is a common condition of curvature of the upper spine in the elderly and its development occurs through degenerative change. However, relatively little is known about the effect of kyphotic changes on balance in the elderly. The aim of this study is to investigate the influence of kyphosis on the balance strategy through use of the motor control test (MCT) in computerized dynamic posturography.MethodsFifty healthy subjects who were not affected by other medical disorders that could affect gait or balance were enrolled in the study. By simulation of kyphotic condition through change of the angles of the line connecting the shoulder to the hip and the ankle axis by approximately 30°, the latency and amplitude of the MCT were measured in upright and kyphotic condition.ResultsIn the kyphotic condition, latency was shortened in backward movement. In forward movement, latency was shortened only in large stimulation. The amplitude in forward movement was decreased in kyphotic condition. However, the change of amplitude was not significant in large intensity backward movement in the same condition.ConclusionKyphotic condition decreases the latency of MCT, especially in backward movement. These findings imply that kyphotic condition may serve as a protective factor against falls

    MAIR: Multi-view Attention Inverse Rendering with 3D Spatially-Varying Lighting Estimation

    Full text link
    We propose a scene-level inverse rendering framework that uses multi-view images to decompose the scene into geometry, a SVBRDF, and 3D spatially-varying lighting. Because multi-view images provide a variety of information about the scene, multi-view images in object-level inverse rendering have been taken for granted. However, owing to the absence of multi-view HDR synthetic dataset, scene-level inverse rendering has mainly been studied using single-view image. We were able to successfully perform scene-level inverse rendering using multi-view images by expanding OpenRooms dataset and designing efficient pipelines to handle multi-view images, and splitting spatially-varying lighting. Our experiments show that the proposed method not only achieves better performance than single-view-based methods, but also achieves robust performance on unseen real-world scene. Also, our sophisticated 3D spatially-varying lighting volume allows for photorealistic object insertion in any 3D location.Comment: Accepted by CVPR 2023; Project Page is https://bring728.github.io/mair.project

    The Genome Sequence of 'Mycobacterium massiliense' Strain CIP 108297 Suggests the Independent Taxonomic Status of the Mycobacterium abscessus Complex at the Subspecies Level

    Get PDF
    Members of the Mycabacterium abscessus complex are rapidly growing mycobacteria that are emerging as human pathogens. The M. abscassus complex was previously composed of three species, namely M. abscessus sensu strict, 'M. massiliense', and M. bolletii', In 2011, 'M. massiliense' and 'M. bolletre' were united and reclassified as a single subspecies within M. abscessus: M. abscessus subsp. bolletii. However, the placement of 'M. massiliense' Within the boundary of M. abscessus subsp. balletii remains highly controversial with regard to clinical aspects. In this study, we revisited the taxonomic status of members of the M. abscessus complex based on comparative analysis of he whole-genome sequences of 53 strains, The genome sequence of the previous type strain of 'Mycobacterium massiliense' (CIP 108297) was determined using next-generation sequencing. The genome tree based on average nucleotide identity (AN I) values supported the differentiation of M. bolletii' and M. massiliense' at the subspecies level. The genome tree also clearly illustrated that 'M. bolletil' and 'M. massiliense' form a distinct phylogenetic clade within the radiation of the M. abscessus complex. The genomic distances observed in this study suggest that the current M. abscessus subsp. bolletii taxon should be divided into two subspecies, M. abscessus subsp. massiliense subsp. nov. and M. abscessus subsp. bolletii, to correspondingly accommodate the previously known 'M. assiliense' and 'M. bolletii' strains.

    Comparative Study of Human Age Estimation with or without Preclassification of Gender and Facial Expression

    Get PDF
    Age estimation has many useful applications, such as age-based face classification, finding lost children, surveillance monitoring, and face recognition invariant to age progression. Among many factors affecting age estimation accuracy, gender and facial expression can have negative effects. In our research, the effects of gender and facial expression on age estimation using support vector regression (SVR) method are investigated. Our research is novel in the following four ways. First, the accuracies of age estimation using a single-level local binary pattern (LBP) and a multilevel LBP (MLBP) are compared, and MLBP shows better performance as an extractor of texture features globally. Second, we compare the accuracies of age estimation using global features extracted by MLBP, local features extracted by Gabor filtering, and the combination of the two methods. Results show that the third approach is the most accurate. Third, the accuracies of age estimation with and without preclassification of facial expression are compared and analyzed. Fourth, those with and without preclassification of gender are compared and analyzed. The experimental results show the effectiveness of gender preclassification in age estimation
    corecore