2,820 research outputs found

    Overcoming polar‐format issues in synthetic aperture radar multichannel autofocus

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166214/1/rsn2bf00419.pd

    A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC

    Get PDF
    Rationale: Unlike traditional biopsy, liquid biopsy, which is a largely non-invasive diagnostic and monitoring tool, can be performed more frequently to better track tumors and mutations over time and to validate the efficiency of a cancer treatment. Circulating tumor cells (CTCs) are considered promising liquid biopsy biomarkers; however, their use in clinical settings is limited by high costs and a low throughput of standard platforms for CTC enumeration and analysis. In this study, we used a label-free, high-throughput method for CTC isolation directly from whole blood of patients using a standalone, clinical setting-friendly platform. Methods: A CTC-based liquid biopsy approach was used to examine the efficacy of therapy and emergent drug resistance via longitudinal monitoring of CTC counts, DNA mutations, and single-cell-level gene expression in a prospective cohort of 40 patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. Results: The change ratio of the CTC counts was associated with tumor response, detected by CT scan, while the baseline CTC counts did not show association with progression-free survival or overall survival. We achieved a 100% concordance rate for the detection of EGFR mutation, including emergence of T790M, between tumor tissue and CTCs. More importantly, our data revealed the importance of the analysis of the epithelial/mesenchymal signature of individual pretreatment CTCs to predict drug responsiveness in patients. Conclusion: The fluid-assisted separation technology disc platform enables serial monitoring of CTC counts, DNA mutations, as well as unbiased molecular characterization of individual CTCs associated with tumor progression during targeted therapy

    Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds

    Full text link
    We investigate the relationship between the Lagrangian Floer superpotentials for a toric orbifold and its toric crepant resolutions. More specifically, we study an open string version of the crepant resolution conjecture (CRC) which states that the Lagrangian Floer superpotential of a Gorenstein toric orbifold X\mathcal{X} and that of its toric crepant resolution YY coincide after analytic continuation of quantum parameters and a change of variables. Relating this conjecture with the closed CRC, we find that the change of variable formula which appears in closed CRC can be explained by relations between open (orbifold) Gromov-Witten invariants. We also discover a geometric explanation (in terms of virtual counting of stable orbi-discs) for the specialization of quantum parameters to roots of unity which appears in Y. Ruan's original CRC ["The cohomology ring of crepant resolutions of orbifolds", Gromov-Witten theory of spin curves and orbifolds, 117-126, Contemp. Math., 403, Amer. Math. Soc., Providence, RI, 2006]. We prove the open CRC for the weighted projective spaces X=P(1,,1,n)\mathcal{X}=\mathbb{P}(1,\ldots,1,n) using an equality between open and closed orbifold Gromov-Witten invariants. Along the way, we also prove an open mirror theorem for these toric orbifolds.Comment: 48 pages, 1 figure; v2: references added and updated, final version, to appear in CM

    Abelian Chern-Simons field theory and anyon equation on a torus

    Full text link
    We quantize the abelian Chern-Simons theory coupled to non-relativistic matter field on a torus without invoking the flux quantization. Through a series of canonical transformations which is equivalent to solving the Gauss constraint, we obtain an effective hamiltonian density with periodic matter field. We also obtain the many-anyon Schr\"odinger equation with periodic Aharonov-Bohm potentials and analyze the periodic property of the wavefunction. Some comments are given on the different features of our approach from the previous ones.Comment: 24, SNUTP-93-9

    Deformed Algebras from Inverse Schwinger Method

    Full text link
    We consider a problem which may be viewed as an inverse one to the Schwinger realization of Lie algebra, and suggest a procedure of deforming the so-obtained algebra. We illustrate the method through a few simple examples extending Schwinger's su(1,1)su(1,1) construction. As results, various q-deformed algebras are (re-)produced as well as their undeformed counterparts. Some extensions of the method are pointed out briefly.Comment: 14 pages, Jeonju University Report, Late

    Electron irradiation effects on superconductivity in PdTe2_2: an application of a generalized Anderson theorem

    Full text link
    Low temperature (\sim 20~K) electron irradiation with 2.5 MeV relativistic electrons was used to study the effect of controlled non-magnetic disorder on the normal and superconducting properties of the type-II Dirac semimetal PdTe2_2. We report measurements of longitudinal and Hall resistivity, thermal conductivity and London penetration depth using tunnel-diode resonator technique for various irradiation doses. The normal state electrical resistivity follows Matthiessen rule with an increase of the residual resistivity at a rate of \sim0.77μΩ \mu \Omegacm/(C/cm2)(\textrm{C}/\textrm{cm}^2). London penetration depth and thermal conductivity results show that the superconducting state remains fully gapped. The superconducting transition temperature is suppressed at a non-zero rate that is about sixteen times slower than described by the Abrikosov-Gor'kov dependence, applicable to magnetic impurity scattering in isotropic, single-band ss-wave superconductors. To gain information about the gap structure and symmetry of the pairing state, we perform a detailed analysis of these experimental results based on insight from a generalized Anderson theorem for multi-band superconductors. This imposes quantitative constraints on the gap anisotropies for each of the possible pairing candidate states. We conclude that the most likely pairing candidate is an unconventional A1g+A_{1g}^{+-} state. While we cannot exclude the conventional A1g++A_{1g}^{++} and the triplet A1uA_{1u}, we demonstrate that these states require additional assumptions about the orbital structure of the disorder potential to be consistent with our experimental results, e.g., a ratio of inter- to intra-band scattering for the singlet state significantly larger than one. Due to the generality of our theoretical framework, we think that it will also be useful for irradiation studies in other spin-orbit-coupled multi-orbital systems.Comment: 22 pages, 12 figure

    The SYZ conjecture via homological mirror symmetry

    Full text link
    These are expository notes based on a talk given at the Superschool on derived categories and D-branes at University of Alberta in July of 2016. The goal of these notes is to give a motivated introduction to the Strominger-Yau-Zaslow (SYZ) conjecture from the point of view of homological mirror symmetry.Comment: Contribution to the proceedings of the Superschool on derived categories and D-brane

    Vortex solutions of a Maxwell-Chern-Simons field coupled to four-fermion theory

    Full text link
    We find the static vortex solutions of the model of Maxwell-Chern-Simons gauge field coupled to a (2+1)-dimensional four-fermion theory. Especially, we introduce two matter currents coupled to the gauge field minimally: the electromagnetic current and a topological current associated with the electromagnetic current. Unlike other Chern-Simons solitons the N-soliton solution of this theory has binding energy and the stability of the solutions is maintained by the charge conservation laws.Comment: 7 pages, harvmac, To be published in Phys. Rev. D5
    corecore