37,834 research outputs found

    Free wake analysis of hover performance using a new influence coefficient method

    Get PDF
    A new approach to the prediction of helicopter rotor performance using a free wake analysis was developed. This new method uses a relaxation process that does not suffer from the convergence problems associated with previous time marching simulations. This wake relaxation procedure was coupled to a vortex-lattice, lifting surface loads analysis to produce a novel, self contained performance prediction code: EHPIC (Evaluation of Helicopter Performance using Influence Coefficients). The major technical features of the EHPIC code are described and a substantial amount of background information on the capabilities and proper operation of the code is supplied. Sample problems were undertaken to demonstrate the robustness and flexibility of the basic approach. Also, a performance correlation study was carried out to establish the breadth of applicability of the code, with very favorable results

    New Regime of MHD Turbulence: Cascade Below Viscous Cutoff

    Full text link
    In astrophysical situations, e.g. in the interstellar medium (ISM), neutrals can provide viscous damping on scales much larger than the magnetic diffusion scale. Through numerical simulations, we have found that the magnetic field can have a rich structure below the dissipation cutoff scale. This implies that magnetic fields in the ISM can have structures on scales much smaller than parsec scales. Our results show that the magnetic energy contained in a wavenumber band is independent of the wavenumber and magnetic structures are intermittent and extremely anisotropic. We discuss the relation between our results and the formation of the tiny-scale atomic structure (TSAS).Comment: ApJ Letters, accepted (Feb. 10, 2002; ApJ, 566, L...); 10 pages, 3 figure

    Discontinuous percolation transitions in real physical systems

    Full text link
    We study discontinuous percolation transitions (PT) in the diffusion-limited cluster aggregation model of the sol-gel transition as an example of real physical systems, in which the number of aggregation events is regarded as the number of bonds occupied in the system. When particles are Brownian, in which cluster velocity depends on cluster size as vs∼sηv_s \sim s^{\eta} with η=−0.5\eta=-0.5, a larger cluster has less probability to collide with other clusters because of its smaller mobility. Thus, the cluster is effectively more suppressed in growth of its size. Then the giant cluster size increases drastically by merging those suppressed clusters near the percolation threshold, exhibiting a discontinuous PT. We also study the tricritical behavior by controlling the parameter η\eta, and the tricritical point is determined by introducing an asymmetric Smoluchowski equation.Comment: 5 pages, 5 figure

    Schwinger Effect in Non-parallel D1-branes: A Path Integral Approach

    Full text link
    We study the Schwinger effect in a system of non-parallel D1-branes for the bosonic strings using the path integral formalism. We drive the string pair creation rate by calculating the one loop vacuum amplitude of the setup in presence of the background electric filed defined along one of the D1-branes. We find an angle dependent minimum value for the background field and show that the decaying of vacuum into string pairs takes place for the field above this value. It is shown that in θ→π2\theta\rightarrow\frac{\pi}{2} limit the vacuum becomes stable and thus no pair creation occurs

    Vacuum defects without a vacuum

    Get PDF
    Topological defects can arise in symmetry breaking models where the scalar field potential V(ϕ)V(\phi) has no minima and is a monotonically decreasing function of ∣ϕ∣|\phi|. The properties of such vacuumless defects are quite different from those of the ``usual'' strings and monopoles. In some models such defects can serve as seeds for structure formation, or produce an appreciable density of mini-black holes.Comment: 11 pages, REVTeX, 1 Postscript figure. Minor changes. Final version, to appear in Phys. Rev.

    Polarization of Prompt J/psi at the Tevatron

    Full text link
    The polarization of prompt J/psi at the Fermilab Tevatron is calculated within the nonrelativistic QCD factorization framework. The contribution from radiative decays of P-wave charmonium states decreases, but does not eliminate, the transverse polarization at large transverse momentum. The angular distribution parameter alpha for leptonic decays of the J/\psi is predicted to increase from near 0 at p_T = 5 GeV to about 0.5 at p_T = 20 GeV. The prediction is consistent with measurements by the CDF Collaboration at intermediate values of p_T, but disagrees by about 3 standard deviations at the largest values of p_T measured.Comment: 4 pages, 2 figures, one reference added, accepted for publication in Phys. Rev.
    • …
    corecore