43 research outputs found

    Condensation in randomly perturbed zero-range processes

    Full text link
    The zero-range process is a stochastic interacting particle system that exhibits a condensation transition under certain conditions on the dynamics. It has recently been found that a small perturbation of a generic class of jump rates leads to a drastic change of the phase diagram and prevents condensation in an extended parameter range. We complement this study with rigorous results on a finite critical density and quenched free energy in the thermodynamic limit, as well as quantitative heuristic results for small and large noise which are supported by detailed simulation data. While our new results support the initial findings, they also shed new light on the actual (limited) relevance in large finite systems, which we discuss via fundamental diagrams obtained from exact numerics for finite systems.Comment: 18 pages, 6 figure

    Instability of condensation in the zero-range process with random interaction

    Get PDF
    The zero-range process is a stochastic interacting particle system that is known to exhibit a condensation transition. We present a detailed analysis of this transition in the presence of quenched disorder in the particle interactions. Using rigorous probabilistic arguments we show that disorder changes the critical exponent in the interaction strength below which a condensation transition may occur. The local critical densities may exhibit large fluctuations and their distribution shows an interesting crossover from exponential to algebraic behaviour.Comment: 4 pages, 4 figures; included new simulation data (Fig. 4), small changes in introduction and conclusio

    Condensation in stochastic mass transport models: beyond the zero-range process

    Get PDF
    We consider an extension of the zero-range process to the case where the hop rate depends on the state of both departure and arrival sites. We recover the misanthrope and the target process as special cases for which the probability of the steady state factorizes over sites. We discuss conditions which lead to the condensation of particles and show that although two different hop rates can lead to the same steady state, they do so with sharply contrasting dynamics. The first case resembles the dynamics of the zero-range process, whereas the second case, in which the hop rate increases with the occupation number of both sites, is similar to instantaneous gelation models. This new "explosive" condensation reveals surprisingly rich behaviour, in which the process of condensate's formation goes through a series of collisions between clusters of particles moving through the system at increasing speed. We perform a detailed numerical and analytical study of the dynamics of condensation: we find the speed of the moving clusters, their scattering amplitude, and their growth time. We finally show that the time to reach steady state decreases with the size of the system.Comment: 31 pages, 14 figures, submitted to J. Phys.

    Condensation in models with factorized and pair-factorized stationary states

    Get PDF
    Non-equilibrium real-space condensation is a phenomenon in which a finite fraction of some conserved quantity (mass, particles, etc.) becomes spatially localised. We review two popular stochastic models of hopping particles that lead to condensation and whose stationary states assume a factorized form: the zero-range process and the misanthrope process, and their various modifications. We also introduce a new model - a misanthrope process with parallel dynamics - that exhibits condensation and has a pair-factorized stationary state.Comment: 15 pages, 2 figures submitted to J. Stat. Mec
    corecore