32 research outputs found

    Thomas-Fermi-Dirac-von Weizsacker hydrodynamics in laterally modulated electronic systems

    Full text link
    We have studied the collective plasma excitations of a two-dimensional electron gas with an arbitrary lateral charge-density modulation. The dynamics is formulated using a previously developed hydrodynamic theory based on the Thomas-Fermi-Dirac-von Weizsacker approximation. In this approach, both the equilibrium and dynamical properties of the periodically modulated electron gas are treated in a consistent fashion. We pay particular attention to the evolution of the collective excitations as the system undergoes the transition from the ideal two-dimensional limit to the highly-localized one-dimensional limit. We also calculate the power absorption in the long-wavelength limit to illustrate the effect of the modulation on the modes probed by far-infrared (FIR) transmission spectroscopy.Comment: 27 page Revtex file, 15 Postscript figure

    Prewetting transitions of Ar and Ne on alkali metal surfaces

    Full text link
    We have studied by means of Density-Functional calculations the wetting properties of Ar and Ne adsorbed on a plane whose adsorption properties simulate the Li and Na surfaces. We use reliable ab-initio potentials to model the gas-substrate interactions. Evidence for prewetting transitions is found for all the systems investigated and their wetting phase diagrams are calculated.Comment: 6 pages, 8 figures, submitted for publication in Phys. Rev.

    Wetting transitions of Ne

    Full text link
    We report studies of the wetting behavior of Ne on very weakly attractive surfaces, carried out with the Grand Canonical Monte Carlo method. The Ne-Ne interaction was taken to be of Lennard-Jones form, while the Ne-surface interaction was derived from an ab initio calculation of Chizmeshya et al. Nonwetting behavior was found for Li, Rb, and Cs in the temperature regime explored (i.e., T < 42 K). Drying behavior was manifested in a depleted fluid density near the Cs surface. In contrast, for the case of Mg (a more attractive potential) a prewetting transition was found near T= 28 K. This temperature was found to shift slightly when a corrugated potential was used instead of a uniform potential. The isotherm shape and the density profiles did not differ qualitatively between these cases.Comment: 22 pages, 12 figures, submitted to Phys. Rev.

    To wet or not to wet: that is the question

    Full text link
    Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials V(r), which depend on the specific adsorption system. The transitions of light inert gases and H2 molecules on alkali metal surfaces have been explored extensively and are relatively well understood in terms of the least attractive adsorption interactions in nature. Much less thoroughly investigated are wetting transitions of Hg, water, heavy inert gases and other molecular films. The basic idea is that nonwetting occurs, for energetic reasons, if the adsorption potential's well-depth D is smaller than, or comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At the wetting temperature, Tw, the transition to wetting occurs, for entropic reasons, when the liquid's surface tension is sufficiently small that the free energy cost in forming a thick film is sufficiently compensated by the fluid- surface interaction energy. Guidelines useful for exploring wetting transitions of other systems are analyzed, in terms of generic criteria involving the "simple model", which yields results in terms of gas-surface interaction parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy

    Toward a Density Functional Description of Liquid pH(2)

    Get PDF
    A finite-temperature density functional approach to describe the properties of parahydrogen in the liquid-vapor coexistence region is presented. The first proposed functional is zero-range, where the density-gradient term is adjusted so as to reproduce the surface tension of the liquid-vapor interface at low temperature. The second functional is finite-range and, while it is fitted to reproduce bulk pH(2) properties only, it is shown to yield surface properties in good agreement with experiments. These functionals are used to study the surface thickness of the liquid-vapor interface, the wetting transition of parahydrogen on a planar Rb model surface, and homogeneous cavitation in bulk liquid pH(2)

    Sufficiency conditions for quantum reflection

    No full text
    The mathematics of low-energy scattering from asymptotic power law potentials are examined to extract characteristic lengths of the scattering problem in the limit of low velocity. These are then used to characterize the limiting behavior of the scattering wave function, leading immediately to general, explicit, sufficiency conditions for quantum reflection for arbitrary gas and surface species
    corecore