10 research outputs found

    Design rules for high mobility xanthene-based hole transport materials

    Get PDF
    Tunable and highly conductive hole transport materials are crucial for the performance of organic electronics applications such as organic light emitting diodes and perovskite solar cells. For commercial applications, these materials\u27 requirements include easy synthesis, high hole mobility, and highly tuned and compatible electronic energy levels. Here, we present a systematic study of a recently discovered, easy-to-synthesize class of spiro[fluorene-9,9′-xanthene]-based organic hole transport materials. Systematic side group functionalization allows us to control the HOMO energy and charge carrier mobility. Analysis of the bulk simulations enables us to derive design rules for mobility enhancement. We show that larger functional groups (e.g. methyl) decrease the conformational disorder due to steric effects and thus increase the hole mobility. Highly asymmetric or polar side groups (e.g. fluorine), however, increase the electrostatic disorder and thus reduce the hole mobility. These generally applicable design rules will help in the future to further optimize organic hole transport materials

    Our understanding about phytoplasma research scenario in India

    No full text

    The Family Acholeplasmataceae (Including Phytoplasmas)The Prokaryotes

    No full text
    The family Acholeplasmataceae was originally established to accommodate the genus Acholeplasma, comprising the mollicutes that could be cultivated without the supplement of cholesterol and that use UGA as a stop codon instead of coding for tryptophan. It was later shown that the phytoplasmas, a large group of uncultivable, wall-less, non-helical mollicutes that are associated with plants and insects, shared taxonomically relevant properties with members of the genus Acholeplasma. Being not cultivable in vitro in axenic culture, the phytoplasmas could not be classified using the standards used for other mollicutes and are named using the category of Candidatus, as “Ca. Phytoplasma.” Although phytoplasmas are associated with habitats and ecology different from acholeplasmas, the two genera Acholeplasma and “Candidatus Phytoplasma” are phylogenetically related and form a distinct clade within the Mollicutes. The persisting inability to grow the phytoplasmas in vitro hinders the identification of their distinctive phenotypic traits, important criteria for mollicute classification. Until supplemental phenotypic traits become available, the genus “Candidatus Phytoplasma” is designated, on the basis of phylogeny, as a tentative member in the family Acholeplasmataceae. Phylogenetic analysis based on gene sequences, in particular, ribosomal sequences, has provided the major supporting evidence for the composition and taxonomic subdivision of this group of organisms with diverse habitats and ecology and has become the mainstream for the Acholeplasmataceae systematics. However, without the ability to determine phenotypic properties, the circumscription of related species among the non culturable members of the family remains a major issue. The genus Acholeplasma comprises 14 species predominantly associated with animals and isolated from mammalian fluids but regarded as not normally pathogenic. Conversely, the genus “Ca. Phytoplasma” includes plant pathogens of major economic relevance worldwide. To date, 36 “Ca. Phytoplasma species” have been described

    Current Development toward Commercialization of Metal‐Halide Perovskite Photovoltaics

    No full text
    corecore