207 research outputs found

    Exfoliative cytology and genetic analysis for a non-invasive approach to the diagnosis of white sponge nevus. Case series

    Get PDF
    Background: White Sponge Nevus (WSN) is a rare benign disorder associated with mutations in genes coding for cytokeratin 4 (KRT4) and 13 (KRT13) characterized by dyskeratotic hyperplasia of mucous membranes. This study was aimed at examining different approaches (cytology, pathology and genetic analysis) to WSN diagnosis. Methods: A series of four patients with asymptomatic white diffuse oral lesions were evaluated and, before performing an incisional biopsy for pathology, an oral brush Thin Prep was collected for exfoliative liquid-based cytology (LBC). DNA for genetic analysis was also obtained from patients and both their parents, using buccal swabs. Results: Pathology and cytology showed similar results, leading to the same diagnosis of hyperkeratotic epithelium with acanthosis and spongiosis, without atypia, demonstrating the efficiency of LBC for the differential diagnosis. Sequencing analysis revealed at least 6 rare variants in the KRT4 and KRT13 genes in each patient, contributed in part by both unaffected parents. Conclusions: Thin Prep for oral exfoliative cytology and genetic analysis are sufficient for an accurate diagnosis of WSN. The combination of cytological and genetic analyses could substitute the histologic exam, providing a non-invasive alternative for incisional biopsy

    Second-line administration of thrombopoietin receptor agonists in immune thrombocytopenia: Italian Delphi-based consensus recommendations

    Get PDF
    Introduction: In patients with primary immune thrombocytopenia (ITP), a short course of steroids is routinely given as first-line therapy. However, the response is often transient and additional therapy is usually needed. Thrombopoietin receptor agonists (TPO-RAs) are frequently used as second-line therapy, although there is little clinical guidance on the timing of their administration and on tapering/discontinuation of the drug. To provide clinical recommendations, we used the Delphi technique to obtain consensus for statements regarding administration and on tapering/discontinuation of second-line TPO-RAs among a group of Italian clinicians with expertise in management of ITP. Methods: The Delphi process was used to obtain agreement on five statements regarding initiation and on tapering/discontinuation of second-line TPO-RAs. Agreement was considered when 75% of participants approved the statement. Eleven experts participated in the voting. Results: Full consensus was reached for three of the five statements. The experts held that an early switch from corticosteroids to a TPO-RA has the dual advantage of sparing patients from corticosteroid abuse and improve long-term clinical outcomes. All felt that dose reduction of TPO-RAs can be considered in patients with a stable response and platelet count >100 × 109/L that is maintained for at least 6 months in the absence of concomitant treatments, although there was less agreement in patients with a platelet count >50 × 109/L. Near consensus was reached regarding the statement that early treatment with a TPO-RA is associated with an increase in clinically significant partial or complete response. The experts also agreed that optimization of tapering and discontinuation of TPO-RA therapy in selected patients can improve the quality of life. Conclusion: The present consensus can help to provide guidance on use of TPO-RAs in daily practice in patients with ITP. Plain language summary: Second-line administration of thrombopoietin receptor agonists in immune thrombocytopenia There is little guidance on the timing of administration and tapering/discontinuation of thrombopoietin receptor agonists (TPO-RAs) in patients with primary immune thrombocytopenia (ITP).The Delphi technique was used to obtain consensus for five statements.The present consensus among Italian clinicians aims to provide guidance on second-line use of TPO-RAs for patients with ITP in daily practice

    Tissue-specific down-regulation of LjAMT1;1 compromises nodule function and enhances nodulation in Lotus japonicus

    Get PDF
    Plant ammonium transporters of the AMT1 family are involved in N-uptake from the soil and ammonium transport, and recycling within the plant. Although AMT1 genes are known to be expressed in nitrogen-fixing nodules of legumes, their precise roles in this specialized organ remain unknown. We have taken a reverse-genetic approach to decipher the physiological role of LjAMT1;1 in Lotus japonicus nodules. LjAMT1;1 is normally expressed in both the infected zone and the vascular tissue of Lotus nodules. Inhibition of LjAMT1;1 gene expression, using an antisense gene construct driven by a leghemoglobin promoter resulted in a substantial reduction of LjAMT1;1 transcript in the infected tissue but not the vascular bundles of transgenic plants. As a result, the nitrogen-fixing activity of nodules was partially impaired and nodule number increased compared to control plants. Expression of LjAMT1;1-GFP fusion protein in plant cells indicated a plasma-membrane location for the LjAMT1;1 protein. Taken together, the results are consistent with a role of LjAMT1;1 in retaining ammonium derived from symbiotic nitrogen fixation in plant cells prior to its assimilation

    ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons

    Get PDF
    Miles-Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID resequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specificmarkers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injectedwith human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity ofmany brain and spinal circuits

    Italian Oncological Pain Survey (IOPS) A Multicentre Italian Study of Breakthrough Pain Performed in Different Settings

    Get PDF
    Objective: A survey of breakthrough pain (BTP) was performed in five palliative care units (PCU), seven oncology departments (ONC), and nine pain clinics (OPC). Methods: A standard algorithm was used to confirm the diagnosis of BTP of patients refereed to different settings. Results: 1,412 evaluable cancer patients were enrolled. 53.9% were males and the mean age was 63.7±13.1 years. The mean intensity of background pain was 2.8±0.73. Patients reported 2.4±1.1 BTP episodes/day with a mean intensity of 7.37±1.28. 80.6% patients reported that the BTP had a significant negative impact in everyday life. The majority of patients reported a fast onset of BTP, which was predictable in 50.7% of cases, while BTP with a gradual onset (>10 min) was less predictable (29%) (P=0.001). PCU patients were older, had lower Karnofsky levels, a lower number of BTP episodes/day, a slow onset of BTP onset, and a less predictable BTP. Cancer diagnosis was performed a mean of 23.5 months (SD±32.8) before the assessment. The mean duration of background pain was 3.5 months (SD±3.5), and the mean duration of any analgesic treatment was 2.5 months (SD±3). BTP started a mean of 2.2 months (SD±1.9) before the assessment. Characteristics of BTP were influenced by the course of disease, as well as the duration of background pain and initiation of BTP. Most patients took rapid onset opioids and were satisfied with the treatment. BTP diagnosis was prevalently made by ONC and OPC physicians, and rarely by GPs. Conclusion: This survey performed by an Italian observatory expert review group, has confirmed that the BTP represents a clinically relevant condition with a negative impact on the patient’s quality of life. BTP was detected in all settings involved. A number of factors are associated with the BTP. Also factors regarding the course of disease and setting of care have been assessed. This information may help in stratifying patients or predicting the risk of development of BTP with specific characteristics

    Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (<it>MeCP2</it>), modify histones (<it>RSK2 </it>and <it>JARID1C</it>), and remodel nucleosomes through ATP hydrolysis (<it>ATRX</it>). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the <it>SNF2L </it>gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.</p> <p>Methods</p> <p>We used an <it>in silico </it>and RT-PCR approach to fully characterize specific SNF2L isoforms. Mutation screening was performed in 12 patients from individual families with syndromic or non-syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region, complete 5' and 3' untranslated regions, and consensus splice-sites.</p> <p>Results</p> <p>The <it>SNF2L </it>gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing to generate several distinct transcripts. Specific isoforms are generated through the alternate use of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.</p> <p>Conclusion</p> <p>Our results demonstrate that there are numerous splice variants of SNF2L that are expressed in multiple cell types and which alter subcellular localization and function. <it>SNF2L </it>mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the possibility that regulatory mutations might exist. Nonetheless, <it>SNF2L </it>remains a candidate for XLMR localized to Xq25-26, including the Shashi XLMR syndrome.</p

    Mother and Daughter Carrying of the Same Pathogenic Variant in FGFR2 with Discordant Phenotype

    Get PDF
    Craniosynostosis are a heterogeneous group of genetic conditions characterized by the premature fusion of the skull bones. The most common forms of craniosynostosis are Crouzon, Apert and Pfeiffer syndromes. They differ from each other in various additional clinical manifestations, e.g., syndactyly is typical of Apert and rare in Pfeiffer syndrome. Their inheritance is autosomal dominant with incomplete penetrance and one of the main genes responsible for these syndromes is FGFR2, mapped on chromosome 10, encoding fibroblast growth factor receptor 2. We report an FGFR2 gene variant in a mother and daughter who present with different clinical features of Crouzon syndrome. The daughter is more severely affected than her mother, as also verified by a careful study of the face and oral cavity. The c.1032G&gt;A transition in exon 8, already reported as a synonymous p.Ala344 = variant in Crouzon patients, also activates a new donor splice site leading to the loss of 51 nucleotides and the in-frame removal of 17 amino acids. We observed lower FGFR2 transcriptional and translational levels in the daughter compared to the mother and healthy controls. A preliminary functional assay and a molecular modeling added further details to explain the discordant phenotype of the two patients

    Distal Xq duplication and functional Xq disomy

    Get PDF
    Distal Xq duplications refer to chromosomal disorders resulting from involvement of the long arm of the X chromosome (Xq). Clinical manifestations widely vary depending on the gender of the patient and on the gene content of the duplicated segment. Prevalence of Xq duplications remains unknown. About 40 cases of Xq28 functional disomy due to cytogenetically visible rearrangements, and about 50 cases of cryptic duplications encompassing the MECP2 gene have been reported. The most frequently reported distal duplications involve the Xq28 segment and yield a recognisable phenotype including distinctive facial features (premature closure of the fontanels or ridged metopic suture, broad face with full cheeks, epicanthal folds, large ears, small and open mouth, ear anomalies, pointed nose, abnormal palate and facial hypotonia), major axial hypotonia, severe developmental delay, severe feeding difficulties, abnormal genitalia and proneness to infections. Xq duplications may be caused either by an intrachromosomal duplication or an unbalanced X/Y or X/autosome translocation. In XY males, structural X disomy always results in functional disomy. In females, failure of X chromosome dosage compensation could result from a variety of mechanisms, including an unfavourable pattern of inactivation, a breakpoint separating an X segment from the X-inactivation centre in cis, or a small ring chromosome. The MECP2 gene in Xq28 is the most important dosage-sensitive gene responsible for the abnormal phenotype in duplications of distal Xq. Diagnosis is based on clinical features and is confirmed by CGH array techniques. Differential diagnoses include Prader-Willi syndrome and Alpha thalassaemia-mental retardation, X linked (ATR-X). The recurrence risk is significant if a structural rearrangement is present in one of the parent, the most frequent situation being that of an intrachromosomal duplication inherited from the mother. Prenatal diagnosis is performed by cytogenetic testing including FISH and/or DNA quantification methods. Management is multi-specialist and only symptomatic, with special attention to prevention of malnutrition and recurrent infections. Educational and rehabilitation support should be offered to all patients
    • …
    corecore