34 research outputs found

    Magnetic Evolution and Temperature Variation in a Coronal Hole

    Full text link
    We have explored the magnetic flux evolution and temperature variation in a coronal-hole region, using Big Bear Solar Observatory (BBSO) deep magnetograms and {\it SOHO}/EIT images observed from 2005 October 10 to 14. For comparison, we also investigated a neighboring quiet region of the Sun. The coronal hole evolved from its mature stage to its disappearance during the observing period. We have obtained the following results: (1) When the coronal hole was well developed on October 10, about 60 % of the magnetic flux was positive. The EUV brightness was 420 counts pixel1^{-1}, and the coronal temperature, estimated from the line ratio of the EIT 195 {\AA} and 171 {\AA} images, was 1.07 MK. (2) On October 14, when the coronal hole had almost disappeared, 51 % of the magnetic flux was positive, the EUV radiance was 530 counts pixel1^{-1}, and the temperature was 1.10 MK. (3) In the neighboring quiet region, the fraction of positive flux varied between 0.49 and 0.47. The EUV brightness displayed an irregular variation, with a mean value of 870 counts pixel1^{-1}. The temperature was almost constant at 1.11 MK during the five-day observation. Our results demonstrate that in a coronal hole less imbalance of the magnetic flux in opposite polarities leads to stronger EUV brightness and higher coronal temperatures

    Comparison of Magnetic Flux Distribution between a Coronal Hole and a Quiet Region

    Full text link
    Employing Big Bear Solar Observatory (BBSO) deep magnetograms and Hα{\alpha} images in a quiet region and a coronal hole, observed on September 14 and 16, 2004, respectively, we have explored the magnetic flux emergence, disappearance and distribution in the two regions. The following results are obtained: (1) The evolution of magnetic flux in the quiet region is much faster than that in the coronal hole, as the flux appeared in the form of ephemeral regions in the quiet region is 4.3 times as large as that in the coronal hole, and the flux disappeared in the form of flux cancellation, 2.9 times as fast as in the coronal hole. (2) More magnetic elements with opposite polarities in the quiet region are connected by arch filaments, estimating from magnetograms and Hα{\alpha} images. (3) We measured the magnetic flux of about 1000 magnetic elements in each observing region. The flux distribution of network and intranetwork (IN) elements is similar in both polarities in the quiet region. For network fields in the coronal hole, the number of negative elements is much more than that of positive elements. However for the IN fields, the number of positive elements is much more than that of negative elements. (4) In the coronal hole, the fraction of negative flux change obviously with different threshold flux density. 73% of the magnetic fields with flux density larger than 2 Gauss is negative polarity, and 95% of the magnetic fields is negative, if we only measure the fields with their flux density larger than 20 Gauss. Our results display that in a coronal hole, stronger fields is occupied by one predominant polarity; however the majority of weaker fields, occupied by the other polarity

    Radio Emissions from Solar Active Regions

    Full text link

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    Effect of suprathermal particles on the quiet Sun radio emission

    No full text
    The bremsstrahlung emissivity and absorption coefficient in the radiofrequency range are derived under the assumption that the electron population is not purely thermal, but presents a tail of high energy particles. This population is approximated by a two-component Maxwellian distribution and by the kappa-functions of different (integer) index. It is shown that, if the temperature ratio of the two Maxwellians is larger than 10, the absorption coefficient and the effective temperature (the quantities entering the radio transfer equation) depend only on the fraction R of particles in the highest temperature Maxwellian. In the case of kappa-functions the above quantities depend on the index n of the functions.
The microwave radio spectrum is computed for different values of R and for 3n63 \leq n \leq 6, finding, in all cases, brightness temperatures lower than those computed with a pure thermal distribution. This could explain some inconsistencies found between radio and EUV observations

    The HeI abundance in Solar filaments

    No full text
    Three filaments observed with the CDS instrument on the SOHO satellite are analysed to determine the HeI/HI ratio. The HI and Hel bound-free absorptions are the major processes responsible for the lower intensity of transition region (TR) lines observed above filaments. One of the filaments was also observed by SUMER at λ>912\lambda > 912 Å, thus supplying the unabsorbed background intensity. The HI and Hel column densities are derived from several TR lines using a least squares method applied to two different models. The resulting HeI/HI ratio is independent of the model, while the column densities are different by about a factor of two. This difference enables us to discriminate between the two models by comparing the resulting value of the optical depth at the Lyman continuum limit, τ912\tau_{912}, with previous observations and models

    Magnetic fields from synchrotron radiation decay

    No full text

    The Solar Transition Region from UV and microwave observations

    No full text
    Abstract. The quiet sun chromosphere-corona transition region is analyzed by comparing the ultraviolet line intensities (observed by the SOHO satellite) with the radio emission in the microwave range. Results from the two wavelength ranges seem to be in strong disagreement when standard techniques are applied to UV data. A more careful analysis of the line intensities done separately in the network and in the cell decreases the disagreement, but it does not remove it. It is finally shown that the most important reason of disagreement comes from the lowest portion of the transition region, at log T < 4.5, where the plasma parameters derived from the UV lines (no more optically thin) are very uncertain. The radio emission puts therefore important constraints on the physical parameters of this portion of the solar atmosphere

    Bursts Observed at 21 cm with the Westerbork Interferometer

    No full text
    corecore