24 research outputs found

    Association of cerebral small vessel disease burden and health-related quality of life after acute ischemic stroke

    Get PDF
    Objective: Cerebral small vessel disease (SVD) is associated with increased mortality, disability and cognitive decline, depression in stroke survivors. This study examined the association between SVD burden, defined by a combination of SVD markers, and health-related quality of life (HRQoL) in acute ischemic stroke. Methods: Patients admitted with acute ischemic stroke of any etiology were prospectively screened between January 2010 to December 2014 and enrolled in the study if they met study entry criteria. HRQoL was evaluated with the 12-item Stroke Specific Quality of Life (SSQoL) at 3 months after the onset of acute ischemic stroke. SVD was ascertained by the presence of any of the SVD markers including lacune, white matter hyperintensities (WMH), cerebral microbleeds (CMB) and enlarged perivascular spaces (EPVS) in the basal ganglia or their combinations on brain magnetic resonance imaging (MRI). The presence of each individual marker scored 1 point and was summed up to generate an ordinal “SVD score” (0–4) capturing total SVD burden. Linear regression was used to determine the associations between SVD burden and HRQoL. Results: Of the743 acute ischemic stroke patients that formed he study sample (mean age: 66.3 ± 10.6 years; 41.7% women), 49.3%, 22.5%, 16.0%, 9.2% and 3.1% had SVD scores of 0, 1, 2, 3 and 4, respectively. After adjusting for demographic, clinical and imaging variables, the SVD score was independently associated with lower overall score of SSQoL (B = − 1.39, SE = 0.56, p = 0.01), and its domains of mobility (B = − 0.41, SE = 0.10, p \u3c 0.001) and vision (B = − 0.12, SE = 0.06, p = 0.03). Acute infract volume (B = − 1.44, SE = 0.54, p = 0.01), functional independence (B = 5.69, SE = 0.34, p \u3c 0.001) and anxious (B = − 1.13, SE = 0.23, p \u3c 0.001) and depressive symptoms (B = − 3.41, SE = 0.22, p \u3c 0.001) were also the significant predictors of the overall score of SSQoL. Conclusion: The brain’s SVD burden predicts lower HRQoL, predominantly in domains of mobility and vision at 3 months after acute ischemic stroke. The evaluation of SVD burden could facilitate developing individual treatment strategies

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Qualitative Evaluation of a High-Resolution 3D Multi-Sequence Intracranial Vessel Wall Protocol at 3 Tesla MRI

    No full text
    BACKGROUND AND PURPOSE: Intracranial vessel wall imaging using MRI has great potential as a clinical method for assessing intracranial atherosclerosis. The purpose of the current study was to compare three 3T MRI vessel wall sequences with different contrast weightings (T1w, PD, T2w) and dedicated sagittal orientation perpendicular to the middle cerebral artery, to the reconstructed sagittal image from a transverse 3D T1w volumetric isotropically reconstructed turbo spin-echo acquisition (VIRTA), and provide a clinical recommendation. MATERIALS AND METHODS: The above-mentioned sequences were acquired in 10 consecutive Chinese ischemic stroke or TIA patients (age: 68 years, sex: 4 females) with angiographic-confirmed MCA stenosis at 3T. Institutional review board approval was obtained. Two raters qualitatively scored all images on overall image quality, presence of artifacts, and visibility of plaques. Data were compared using Repeated measures ANOVA and Sidak's adjusted post hoc tests. RESULTS: All sequences except the T2w sequence were able to depict the walls of the large vessels of the Circle of Willis (p<0.05). T1w sagittal oblique VIRTA showed significantly more artifacts (p<0.01). Peripherally located plaques were sometimes missed on the sagittal sequences, but could be appreciated on the transverse T1w VIRTA. CONCLUSION: With the 3T multi-sequence vessel wall protocol we were able to assess the intracranial plaque with two different image contrast weightings. The sequence of preference to include in a clinical protocol would be the transverse 3D T1w VIRTA based on absence of artifacts, larger coverage including the whole Circle of Willis, and excellent lesion depiction

    Use of clinical chromosomal microarray in Chinese patients with autism spectrum disorder—implications of a copy number variation involving DPP10

    No full text
    Abstract Background Array comparative genomic hybridization (aCGH) is recommended as a first-tier genetic test for children with autism spectrum disorder (ASD). However, interpretation of results can often be challenging partly due to the fact that copy number variants (CNVs) in non-European ASD patients are not well studied. To address this literature gap, we report the CNV findings in a cohort of Chinese children with ASD. Methods DNA samples were obtained from 258 Chinese ASD patients recruited from a child assessment center between January 2011 and August 2014. aCGH was performed using NimbleGen-CGX-135k or Agilent-CGX 60k oligonucleotide array. Results were classified based on existing guidelines and literature. Results Ten pathogenic CNVs and one likely pathogenic CNV were found in nine patients, with an overall diagnostic yield of 3.5%. A 138 kb duplication involving 3′ exons of DPP10 (arr[GRCh37] 2q14.1(116534689_116672358)x3), reported to be associated with ASD, was identified in one patient (0.39%). The same CNV was reported as variant of uncertain significance (VUS) in DECIPHER database. Multiple individuals of typical development carrying a similar duplication were identified among our ancestry-matched control with a frequency of 6/653 (0.92%) as well as from literature and genomic databases. Conclusions The DPP10 duplication is likely a benign CNV polymorphism enriched in Southern Chinese with a population frequency of ~1%. This highlights the importance of using ancestry-matched controls in interpretation of aCGH findings

    A 73-year-old female patient presented with subacute infarcts of the left parietal cortex and left internal borderzone area.

    No full text
    <p>(A) On the transverse 3D time-of-flight magnetic resonance angiography two stenoses can be appreciated, one in the left M1 segment of the middle cerebral artery (arrowhead) and one in M2 segment of the middle cerebral artery (arrow). The transverse T<sub>1</sub>w VIRTA, after contrast administration, shows a corresponding vessel wall lesion in the M2 segment (B), this lesion is however missed by the transverse reconstruction of the sagittal T<sub>1</sub>w VIRTA sequence, also after contrast administration (C) because of its limited field-of-view (indicated by the dashed lines in A).</p

    Box plots of image quality, artifacts, and visibility of the plaque for the two raters.

    No full text
    <p>Red line = median value of rater 1, dashed red line = median value of rater 2, box = interquartile range, whiskers = minimum and maximum values, and rounds = outliers. The image quality and visibility of the plaque were scored on a scale from 0 (poor) to 2 (good); the presence of artifacts was scored on a scale from 0 (not present) to 2 (present with influence on diagnosis). Some whiskers are not visible because the lower quartile is equal to the minimum, or the upper quartile is equal to the maximum. Also, some median values overlap with the upper or lower quartile. The median value of the artifacts of the T<sub>2</sub>w VIRTA is 0.5 because equal numbers are scored 0 and 1. Caps over the boxes represent significant differences, p-values for image quality, artifacts and visibility of the plaque were <0.001; <0.01; and <0.05, respectively, as assessed by repeated measures ANOVA and Sidak’s adjusted post hoc tests. As an example for the caps: in the upper panel there is an overall significant difference between the T<sub>2</sub>w VIRTA and the PDw VIRTA (p<0.001).</p
    corecore