753 research outputs found
Cephalosporin and Ciprofloxacin Resistance in Salmonella, Taiwan
We report the prevalence and characteristics of Salmonella strains resistant to ciprofloxacin and extended-spectrum cephalosporins in Taiwan from January to May 2004. All isolates resistant to extended-spectrum cephalosporins carried blaCMY-2, and all ciprofloxacin-resistant Salmonella enterica serotype Choleraesuis isolates were genetically related
Duration of untreated bipolar disorder: A multicenter study
Little is known about the demographic and clinical differences between short and long duration of untreated bipolar disorder (DUB) in Chinese patients. This study examined the demographic and clinical features of short (≤2 years) and long DUB (\u3e2 years) in China. A consecutively recruited sample of 555 patients with bipolar disorder (BD) was examined in 7 psychiatric hospitals and general hospital psychiatric units across China. Patients’ demographic and clinical characteristics were collected using a standardized protocol and data collection procedure. The mean DUB was 3.2 ± 6.0 years; long DUB accounted for 31.0% of the sample. Multivariate analyses revealed that longer duration of illness, diagnosis of BD type II, and earlier misdiagnosis of BD for major depressive disorder or schizophrenia were independently associated with long DUB. The mean DUB in Chinese BD patients was shorter than the reported figures from Western countries. The long-term impact of DUB on the outcome of BD is warranted
Age-dependent immune profile in healthy individuals: an original study, systematic review and meta-analysis
Background: The circulatory peripheral immune system is the most convenient approach for determining an individual’s immune status. Due to various reasons, while previous studies have addressed the critical impact of age, most individual studies did not analyze immunosenescence in a systemic manner, which complicates the possibility of building a reference range for age-dependent immune profiles for effective immune monitoring. To address this gap, this study analyzed a group of healthy individuals to establish age-specific reference ranges of the healthy circulatory immune profile, and a systematic review and meta-analysis were conducted to validate the findings and create generalizable immune cell reference ranges. Results: Our study recruited a total of 363 healthy Taiwanese adults (median age 42 years [IQR 30, 62], age range 21 to 87 years, 43.3% male), including 158 under 40 years old, 127 between 40–64 years old, and 78 over 64 years old. Significant age-related alterations were observed in both adaptive and innate immune cell subsets. CD8 + T cells decreased and CD4/CD8 ratio increased, with notable increases in NK cells. CD4 + T cells were less impacted by aging, while CD8 + T cells significantly lost CD28 and increased CD31 expression with age. A clear reverse trend in naïve and memory subsets of CD4 + and CD8 + T cells was observed. Detailed reference ranges for immune cell subsets in healthy Taiwanese adults were established. A systematic review included 7,425 adults and a meta-analysis of 12 eligible studies confirmed our findings in Taiwan, enhancing generalizability. Conclusions: Combined with previous studies and original data through a systematic review and meta-analysis, we highlighted and quantified significant immune profile differences between older and younger individuals. The sex and age-specific reference ranges for peripheral immune cell subsets can serve as a basis for effective immune monitoring of various aging-related illnesses
Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK
AbstractMechanical forces induced by interstitial fluid flow in and surrounding tissues and by blood/lymphatic flow in vessels may modulate cancer cell invasion and metastasis and anticancer drug delivery. Our previous study demonstrated that laminar flow-induced shear stress induces G2/M arrest in tumor cells. However, whether shear stress modulates final cell fate remains unclear. In this study, we investigated the role of flow-induced shear stress in modulating the survival of four human tumor cell lines, i.e., Hep3B hepatocarcinoma cells, MG63 osteosarcoma cells, SCC25 oral squamous carcinoma cells, and A549 carcinomic alveolar basal epithelial cells. Laminar shear stress (LSS) ranging from 0.5 to 12dyn/cm2 induced death of these four tumor cell lines. In contrast to LSS at 0.5dyn/cm2, oscillatory shear stress (OSS) at 0.5±4dyn/cm2 cannot induce cancer cell death. Both LSS and OSS had no effect on human normal hepatocyte, lung epithelial, and endothelial cells. Application of LSS to these four cell lines increased the percentage of cells stained positively for annexin V–FITC, with up-regulations of cleaved caspase-8, -9, and -3, and PARP. In addition, LSS also induced Hep3B cell autophagy, as detected by acidic vesicular organelle formation, LC3B transformation, and p62/SQSTM1 degradation. By transfecting with small interfering RNA, we found that the shear-induced apoptosis and autophagy are mediated by bone morphogenetic protein receptor type (BMPR)-IB, BMPR-specific Smad1 and Smad5, and p38 mitogen-activated protein kinase in Hep3B cells. Our findings provide insights into the molecular mechanisms by which shear stress induces apoptosis and autophagy in tumor cells
Screening Dementia in the Outpatient Department: Patients at Risk for Dementia
The targeted screening for individuals at the risks of having dementia would be crucial to the further public health issues for dementia. This study aimed to conduct a screening study in an outpatient department of a regional hospital to screen people who were at risk of developing comorbid dementia. Patients who visited Kaohsiung Municipal Ta-Tung Hospital (KMTTH) clinics during the period from June 1, 2013, to May 31, 2014, were invited to participate in this screening voluntarily. The trained interviewer collected all participants’ demographic characteristics and used the instrument of ascertainment of dementia 8 (AD8) to find out suspected dementia ones. The result showed a higher ratio (24.1%) of suspected dementia in the outpatient department of a hospital, 500 out of 2017 subjects, than that in the general population. The median (interquartile range) age was significantly higher in the suspected dementia participants (70, (62, 77)) compared to that in nonsuspected dementia ones (65, (60, 73)), and the probability of suspected dementia was significantly increasing with age (P < 0.001). Instead of screening dementia in general population, screening people at the risk of dementia could be the practicable and important issues in the care of dementia
NBM-HD-1: A Novel Histone Deacetylase Inhibitor with Anticancer Activity
HDAC inhibitors (HDACis) have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP), and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231) and rat glioma cells (C6), with an IC50 ranging from 8.5 to 10.3 μM. Western blot demonstrated that levels of p21(Waf1/Cip1), gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1–4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1, p21(Waf1/Cip1) gene expression had markedly increased while cyclin B1 and D1 gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor gene p53 in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activity in vitro and in vivo
Effect of bis(hydroxymethyl) alkanoate curcuminoid derivative MTH-3 on cell cycle arrest, apoptotic and autophagic pathway in triple-negative breast adenocarcinoma MDA-MB-231 cells: An in vitro study
Curcumin has been shown to exert potential antitumor activity in vitro and in vivo involved in multiple signaling pathways. However, the application of curcumin is still limited because of its poor hydrophilicity and low bio-availability. In the present study, we investigated the therapeutic effects of a novel and water soluble bis(hydroxymethyl) alkanoate curcuminoid derivative, MTH-3, on human breast adenocarcinoma MDA-MB-231 cells. This study investigated the effect of MTH-3 on cell viability, cell cycle and induction of autophagy and apoptosis in MDA-MB-231 cells. After 24-h treatment with MTH-3, a concentration-dependent decrease in MDA-MB-231 cell viability was observed, and the IC50 value was 5.37±1.22 μM. MTH-3 significantly triggered G2/M phase arrest and apoptosis in MDA-MB-231 cells. Within a 24-h treatment, MTH-3 decreased the CDK1 activity by decreasing CDK1 and cyclin B1 protein levels. MTH-3-induced apoptosis was further confirmed by morphological assessment and Annexin V/PI staining assay. Induction of apoptosis caused by MTH-3 was accompanied by an apparent increase of DR3, DR5 and FADD and, as well as a marked decrease of Bcl-2 and Bcl-xL protein expression. MTH-3 also decreased the protein levels of Ero1, PDI, PERK and calnexin, as well as increased the expression of IRE1α, CHOP and Bip that consequently led to ER stress and MDA-MB-231 cell apoptosis. In addition, MTH-3-treated cells were involved in the autophagic process and cleavage of LC3B was observed. MTH-3 enhanced the protein levels of LC3B, Atg5, Atg7, Atg12, p62 and Beclin-1 in MDA-MB-231 cells. Finally, DNA microarray was carried out to investigate the level changes of gene expression modulated by MTH-3 in MDA-MB-231 cells. Taken together, our results suggest that MTH-3 might be a novel therapeutic agent for the treatment of triple-negative breast cancer in the near future
KCNN2 polymorphisms and cardiac tachyarrhythmias
Potassium calcium-activated channel subfamily N member 2 (KCNN2) encodes an integral membrane protein that forms small-conductance calcium-activated potassium (SK) channels. Recent studies in animal models show that SK channels are important in atrial and ventricular repolarization and arrhythmogenesis. However, the importance of SK channels in human arrhythmia remains unclear. The purpose of the present study was to test the association between genetic polymorphism of the SK2 channel and the occurrence of cardiac tachyarrhythmias in humans. We enrolled 327 Han Chinese, including 72 with clinically significant ventricular tachyarrhythmias (VTa) who had a history of aborted sudden cardiac death (SCD) or unexplained syncope, 98 with a history of atrial fibrillation (AF), and 144 normal controls. We genotyped 12 representative tag single nucleotide polymorphisms (SNPs) across a 141-kb genetic region containing the KCNN2 gene; these captured the full haplotype information. The rs13184658 and rs10076582 variants of KCNN2 were associated with VTa in both the additive and dominant models (odds ratio [OR] 2.89, 95% confidence interval [CI] = 1.505-5.545, P = 0.001; and OR 2.55, 95% CI = 1.428-4.566, P = 0.002, respectively). After adjustment for potential risk factors, the association remained significant. The population attributable risks of these 2 variants of VTa were 17.3% and 10.6%, respectively. One variant (rs13184658) showed weak but significant association with AF in a dominant model (OR 1.91, CI = 1.025-3.570], P = 0.042). There was a significant association between the KCNN2 variants and clinically significant VTa. These findings suggest an association between KCNN2 and VTa; it also appears that KCNN2 variants may be adjunctive markers for risk stratification in patients susceptible to SCD
- …