187 research outputs found

    Perturbation Calculation of the Axial Anomaly of a Ginsparg-Wilson lattice Dirac operator

    Full text link
    A recent proposal suggests that even if a Ginsparg-Wilson lattice Dirac operator does not possess any topological zero modes in topologically-nontrivial gauge backgrounds, it can reproduce correct axial anomaly for sufficiently smooth gauge configurations, provided that it is exponentially-local, doublers-free, and has correct continuum behavior. In this paper, we calculate the axial anomaly of this lattice Dirac operator in weak coupling perturbation theory, and show that it recovers the topological charge density in the continuum limit.Comment: 25 pages, v2: calculation up to O(g^4) for nonabelian gauge backgroun

    Quenched chiral logarithms in lattice QCD with exact chiral symmetry

    Full text link
    We examine quenched chiral logarithms in lattice QCD with overlap Dirac quark. For 100 gauge configurations generated with the Wilson gauge action at β=5.8 \beta = 5.8 on the 83×24 8^3 \times 24 lattice, we compute quenched quark propagators for 12 bare quark masses. The pion decay constant is extracted from the pion propagator, and from which the lattice spacing is determined to be 0.147 fm. The presence of quenched chiral logarithm in the pion mass is confirmed, and its coefficient is determined to be δ=0.203±0.014 \delta = 0.203 \pm 0.014 , in agreement with the theoretical estimate in quenched chiral perturbation theory. Further, we obtain the topological susceptibility of these 100 gauge configurations by measuring the index of the overlap Dirac operator. Using a formula due to exact chiral symmetry, we obtain the η \eta' mass in quenched chiral perturbation theory, mη=(901±64) m_{\eta'} = (901 \pm 64) Mev, and an estimate of δ=0.197±0.027 \delta = 0.197 \pm 0.027 , which is in good agreement with that determined from the pion mass.Comment: 24 pages, 6 EPS figures; v2: some clarifications added, to appear in Physical Review

    Generalized Ginsparg-Wilson algebra and index theorem on the lattice

    Full text link
    Recent studies of the topological properties of a general class of lattice Dirac operators are reported. This is based on a specific algebraic realization of the Ginsparg-Wilson relation in the form γ5(γ5D)+(γ5D)γ5=2a2k+1(γ5D)2k+2\gamma_{5}(\gamma_{5}D)+(\gamma_{5}D)\gamma_{5} = 2a^{2k+1}(\gamma_{5}D)^{2k+2} where kk stands for a non-negative integer. The choice k=0k=0 corresponds to the commonly discussed Ginsparg-Wilson relation and thus to the overlap operator. It is shown that local chiral anomaly and the instanton-related index of all these operators are identical. The locality of all these Dirac operators for vanishing gauge fields is proved on the basis of explicit construction, but the locality with dynamical gauge fields has not been established yet. We suggest that the Wilsonian effective action is essential to avoid infrared singularities encountered in general perturbative analyses.Comment: 11 pages. Talk given at APCTP-Nankai Joint Symposium on Lattice Statistics and Mathematical Physics, Tianjin, China, 8-11 October, 2001. To be published in the Proceedings and in Int. Jour. Mod. Phys.

    Dynamical overlap fermions, results with hybrid Monte-Carlo algorithm

    Get PDF
    We present first, exploratory results of a hybrid Monte-Carlo algorithm for dynamical, n_f=2, four-dimensional QCD with overlap fermions. As expected, the computational requirements are typically two orders of magnitude larger for the dynamical overlap formalism than for the more conventional (Wilson or staggered) formulations.Comment: 13 pages, 2 figure

    CFD simulations of the spent fuel pool in the loss of coolant accident

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.The study utilized the computational fluid dynamics (CFD) methodology to investigate the thermal hydraulic behavior during the hypothetical event of normal operation and loss of cooling accident occurring at spent fuel pool. The boiling time, water level decreasing rate, fuel exposure time and temperature response after fuel exposure for the nuclear power plants under the accident were predicted in this study. We also analyze the flow and heat transfer for the single Atrium-10 fuel bundle. The details of the physics will be shown in this study. The results indicate that the fuel temperature in the pool will not exceed 1200°C to avoid the water-metal reaction after failure of RHR system for 4.578 days. We find that the velocity in the bundle are much faster than outside of the bundle under the LOCA accident.dc201

    CFD methodology development for Singapore Green Mark Building application

    Get PDF
    In the recent decade, investigation on the total building performance has become increasingly important for the environmental modelling community. With the advance of integrated design and modelling tool and Building Information Modelling (BIM) development, it is now possible to simulate and predict the building energy efficiency, air quality & health assessment, risk analysis & mitigation scenario for our urban planning analysis; all seamlessly in a single urban digital platform. In order to achieve the national goal of at least 80% of the buildings in Singapore to be green by 2030, Singapore Government has introduced the new BCA Green Mark 2015 scheme for accelerating the green building agenda. During the recent third Green Building Masterplan announced in 2015, it was decided to engage building tenants and occupants more actively to drive energy consumption behavioural change and to address the well-being of the people. Following up from this Masterplan, it is important for both the stakeholders and agency to jointly develop Performance Driven and Scientific Based Simulation Methodology and Evaluation Parameters as a frame work to evaluate the building design based on Singapore's hot and humid climate and densely-built-up urban areas for the Green Mark 2015 Scheme. In this paper, we will present the methodology and perform a baseline case study for the natural ventilation performance with the typical Non-Residential Building (NRB) industrial building. This can be resulted in the comprehensive CFD Quality Check List for the Environmental Sustainable Design (ESD) consultant in order to maintain modelling result accuracy. Demonstration on Indoor Air Quality (IAQ) using Air Exchange Effectiveness (AEE) as performance indicator will also be illustrated

    Domain wall fermion and CP symmetry breaking

    Get PDF
    We examine the CP properties of chiral gauge theory defined by a formulation of the domain wall fermion, where the light field variables qq and qˉ\bar q together with Pauli-Villars fields QQ and Qˉ\bar Q are utilized. It is shown that this domain wall representation in the infinite flavor limit N=N=\infty is valid only in the topologically trivial sector, and that the conflict among lattice chiral symmetry, strict locality and CP symmetry still persists for finite lattice spacing aa. The CP transformation generally sends one representation of lattice chiral gauge theory into another representation of lattice chiral gauge theory, resulting in the inevitable change of propagators. A modified form of lattice CP transformation motivated by the domain wall fermion, which keeps the chiral action in terms of the Ginsparg-Wilson fermion invariant, is analyzed in detail; this provides an alternative way to understand the breaking of CP symmetry at least in the topologically trivial sector. We note that the conflict with CP symmetry could be regarded as a topological obstruction. We also discuss the issues related to the definition of Majorana fermions in connection with the supersymmetric Wess-Zumino model on the lattice.Comment: 33 pages. Note added and a new reference were added. Phys. Rev.D (in press

    Comment on "Resolving the 180-deg Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions"

    Full text link
    In a recent paper, Leka at al. (Solar Phys. 260, 83, 2009)constructed a synthetic vector magnetogram representing a three-dimensional magnetic structure defined only within a fraction of an arcsec in height. They rebinned the magnetogram to simulate conditions of limited spatial resolution and then compared the results of various azimuth disambiguation methods on the resampled data. Methods relying on the physical calculation of potential and/or non-potential magnetic fields failed in nearly the same, extended parts of the field of view and Leka et al. (2009) attributed these failures to the limited spatial resolution. This study shows that the failure of these methods is not due to the limited spatial resolution but due to the narrowly defined test data. Such narrow magnetic structures are not realistic in the real Sun. Physics-based disambiguation methods, adapted for solar magnetic fields extending to infinity, are not designed to handle such data; hence, they could only fail this test. I demonstrate how an appropriate limited-resolution disambiguation test can be performed by constructing a synthetic vector magnetogram very similar to that of Leka et al. (2009) but representing a structure defined in the semi-infinite space above the solar photosphere. For this magnetogram I find that even a simple potential-field disambiguation method manages to resolve the ambiguity very successfully, regardless of limited spatial resolution. Therefore, despite the conclusions of Leka et al. (2009), a proper limited-spatial-resolution test of azimuth disambiguation methods is yet to be performed in order to identify the best ideas and algorithms.Comment: Solar Physics, in press (19 pp., 5 figures, 2 tables

    Automated Coronal Hole Detection using Local Intensity Thresholding Techniques

    Full text link
    We identify coronal holes using a histogram-based intensity thresholding technique and compare their properties to fast solar wind streams at three different points in the heliosphere. The thresholding technique was tested on EUV and X-ray images obtained using instruments onboard STEREO, SOHO and Hinode. The full-disk images were transformed into Lambert equal-area projection maps and partitioned into a series of overlapping sub-images from which local histograms were extracted. The histograms were used to determine the threshold for the low intensity regions, which were then classified as coronal holes or filaments using magnetograms from the SOHO/MDI. For all three instruments, the local thresholding algorithm was found to successfully determine coronal hole boundaries in a consistent manner. Coronal hole properties extracted using the segmentation algorithm were then compared with in situ measurements of the solar wind at 1 AU from ACE and STEREO. Our results indicate that flux tubes rooted in coronal holes expand super-radially within 1 AU and that larger (smaller) coronal holes result in longer (shorter) duration high-speed solar wind streams

    A Western single-center experience with endoscopic submucosal dissection for early gastrointestinal cancers

    No full text
    Endoscopic submucosal dissection (ESD) has gained worldwide acceptance as a treatment for early gastrointestinal cancers (EGICs). However, the management of these tumors in the Western world is still mainly surgical. Our aim was to evaluate the safety and feasibility of ESD at a European center. Based on the knowledge transferred by one of the most experienced Japanese institutions, we conducted a pilot study on 25 consecutive patients with EGICs located in the esophagus (n = 3), stomach (n = 7), duodenum (n = 1), and colon (n = 14) at our tertiary center over a 2-year-period. The main outcome measurements were complete (R0) resection, as well as en-bloc resection and the management of complications. The R0 and en-bloc resection rates were 100% and 84%, respectively. There were three cases of bleeding and five cases of perforation. With a median follow up of 18 months, two recurrences were observed. We conclude that ESD for early esophageal and gastric cancers is feasible and effective, while colonic ESD requires more expertise
    corecore