151 research outputs found

    Quantification of Analyte Concentration from a Paper-Based Lateral Flow Assay Device Using Reflective Sensors

    Get PDF
    Paper-based point-of-care (POC) diagnostics is a growing field in global health due to the extreme portability, accuracy, affordability, and ease of use of these tests. Advancements in recent years have led to more accurate detection and improved functionality using multistep molecular diagnostics. Many such assays utilize lateral flow detection strips for visualization of diagnostic results by eye, which limits the results to qualitative Yes/No readouts. This project focused on combining recent developments in paper-based POC diagnostics to develop and optimize an in-house built quantitative paper-based diagnostic reader for lateral flow detection in low-resource settings. Initially different sensors, including photocell sensors, reflective IR sensors, and light-to-frequency converters were tested to optimize detection method in terms of accuracy, precision, and affordability. After the detection method was determined, the sensor was calibrated using hCG (pregnancy) test strips from Wondfo® Co. to compare the in-house detection method to a standard image quantification through the ImageJ application. These analyses will be used to calibrate the circuit to relate the light intensity calculated to the concentration of analyte (hCG) present in the sample as well as determine the lower limit of detection (LLOD). The IR reflective sensor and the light-to-frequency converter performed best due to the wide detection output range, adaptability for dark environments, and consistency in detection. We will develop and calibrate both methods for future use. The detection methods determined in this project provide a platform for a multistep diagnostic device for DNA for uses in environmental, food, and health safety, and can be applied to other paper-based diagnostics for accurate quantified results

    One plus one more than two : university-community partnerships for elderly : an interdisciplinary service-learning project

    Full text link
    Faculties at Taipei Medical University developed an interdisciplinary courses cluster which consists of Chinese History, Nutrition, Elderly Activity Design, and Physical Examination. In this course cluster, faculties, students, teaching assistant, and NPO/community members serve the same elderly over two years by providing health related care in accordance with the courses objectives. In this project, not only students\u27 soft abilities, such as problem-solving skills, team work abilities, and communication abilities, are improved, but also develop some pilot devices for the elderly, such as remote health examination and instant soft meal. The paper will describe this model of interdisciplinary service-learning in health professions education, explores common experiences and themes across courses, and identifies key components for success

    Answering the Call to Action: COVID-19 Curriculum Design by Students for Students

    Get PDF

    CD11b suppresses TLR activation of nonclassical monocytes to reduce primary graft dysfunction after lung transplantation

    Get PDF
    Primary graft dysfunction (PGD) is the leading cause of postoperative mortality in lung transplant recipients and the most important risk factor for development of chronic lung allograft dysfunction. The mechanistic basis for the variability in the incidence and severity of PGD between lung transplant recipients is not known. Using a murine orthotopic vascularized lung transplant model, we found that redundant activation of Toll-like receptors 2 and 4 (TLR2 and -4) on nonclassical monocytes activates MyD88, inducing the release of the neutrophil attractant chemokine CXCL2. Deletion of Itgam (encodes CD11b) in nonclassical monocytes enhanced their production of CXCL2 and worsened PGD, while a CD11b agonist, leukadherin-1, administered only to the donor lung prior to lung transplantation, abrogated CXCL2 production and PGD. The damage-associated molecular pattern molecule HMGB1 was increased in peripheral blood samples from patients undergoing lung transplantation after reperfusion and induced CXCL2 production in nonclassical monocytes via TLR4/MyD88. An inhibitor of HMGB1 administered to the donor and recipient prior to lung transplantation attenuated PGD. Our findings suggest that CD11b acts as a molecular brake to prevent neutrophil recruitment by nonclassical monocytes following lung transplantation, revealing an attractive therapeutic target in the donor lung to prevent PGD in lung transplant recipients

    The Projected Dark and Baryonic Ellipsoidal Structure of 20 CLASH Galaxy Clusters

    Get PDF
    We reconstruct the two-dimensional (2D) matter distributions in 20 high-mass galaxy clusters selected from the CLASH survey by using the new approach of performing a joint weak gravitational lensing analysis of 2D shear and azimuthally averaged magnification measurements. This combination allows for a complete analysis of the field, effectively breaking the mass-sheet degeneracy. In a Bayesian framework, we simultaneously constrain the mass profile and morphology of each individual cluster, assuming an elliptical Navarro-Frenk-White halo characterized by the mass, concentration, projected axis ratio, and position angle (PA) of the projected major axis. We find that spherical mass estimates of the clusters from azimuthally averaged weak-lensing measurements in previous work are in excellent agreement with our results from a full 2D analysis. Combining all 20 clusters in our sample, we detect the elliptical shape of weak-lensing halos at the 5σ significance level within a scale of 2 Mpc h. The median projected axis ratio is 0.67 ± 0.07 at a virial mass of M = (15.2 ± 2.8) × 10 M, which is in agreement with theoretical predictions from recent numerical simulations of the standard collisionless cold dark matter model. We also study misalignment statistics of the brightest cluster galaxy, X-ray, thermal Sunyaev-Zel'dovich effect, and strong-lensing morphologies with respect to the weak-lensing signal. Among the three baryonic tracers studied here, we find that the X-ray morphology is best aligned with the weak-lensing mass distribution, with a median misalignment angle of |ΔPA| = 21° ± 7°. We also conduct a stacked quadrupole shear analysis of the 20 clusters assuming that the X-ray major axis is aligned with that of the projected mass distribution. This yields a consistent axis ratio of 0.67 ± 0.10, suggesting again a tight alignment between the intracluster gas and dark matter. © 2018. The American Astronomical Society. All rights reserved.This work was made possible by the availability of high-quality weak-lensing data produced by the CLASH survey. We are grateful to the CLASH team who enabled us to carry out this work. We thank the anonymous referee for constructive suggestions and comments. We thank Masamune Oguri for making his simulated Subaru Suprime-Cam observations available to us. K.U. acknowledges support from the Ministry of Science and Technology of Taiwan (grants MOST 103-2112-M-001-030-MY3 and MOST 106-2628-M-001-003-MY3) and from the Academia Sinica Investigator Award. M.S. and S.E. acknowledge financial support from the contracts ASI-INAF I/009/10/0, NARO15 ASI-INAF I/037/12/0, ASI 2015-046-R.0 and ASI-INAF n.2017-14-H.0. Support for D.G. was provided by NASA through Einstein Postdoctoral Fellowship grant number PF5-160138 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. T.O. acknowledges support from the Ministry of Science and Technology of Taiwan under the grant MOST 106-2119-M-001-031-MY3. M.M., M.S., S.E., and J.S. acknowledge support from the Italian Ministry of Foreign Affairs and International Cooperation, Directorate General for Country Promotion (Project "Crack the lens"). J.S. was supported by NSF/AST-1617022
    corecore