9,459 research outputs found

    Autocorrelation of Hadrons in Jets Produced in Heavy-Ion Collisions

    Full text link
    Autocorrelation of two pions produced in heavy-ion collisions at intermediate pTp_T is calculated in the framework of the recombination model. The differences of the pseudo-rapidities and azimuthal angles of the two pions are related to the angle between two shower partons in a jet. It is shown how the autocorrelation distribution reveals the properties of jet cone of the shower partons created by high-pTp_T partons in hard collisions.Comment: 24 pages in latex and 3 figures. This is an expanded version with more discussion and references without any change in the physical conten

    Neuro-immune interactions in inflammation and host defense: Implications for transplantation

    Get PDF
    © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine

    Influence of retardation effects on 2D magnetoplasmon spectrum

    Full text link
    Within dissipationless limit the magnetic field dependence of magnetoplasmon spectrum for unbounded 2DEG system found to intersect the cyclotron resonance line, and, then approaches the frequency given by light dispersion relation. Recent experiments done for macroscopic disc-shape 2DEG systems confirm theory expectations.Comment: 2 pages,2 figure

    Quantitative profiling of hydroxy lipid metabolites in mouse organs reveals distinct lipidomic profiles and modifications due to elevated n-3 fatty acid levels

    Get PDF
    Polyunsaturated fatty acids (PUFA) are precursors of bioactive metabolites and mediators. In this study, the profile of hydroxyeicosatetraenoic (HETE), hydroxyeicosapentaenoic (HEPE) and hydroxydocosahexaenoic (HDHA) acids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in colon, liver, lung, spleen, muscle, heart and kidney tissue of healthy wildtype mice were characterized, and compared to profiles in organs from transgenic fat-1 mice engineered to express the Caenorhabditis elegans fat-1 gene encoding an n-3 desaturase and thereby with endogenously elevated n-3 PUFA levels. PUFAs were measured using gas chromatography. The lipid metabolites were assayed using LC-MS/MS. AA and DHA were the prominent PUFAs in wildtype and fat-1 mice. EPA levels were low in both groups even though there was a significant increase in fat-1 organs with an up to 12-fold increase in fat-1 spleen and kidney. DHA levels increased by approximately 1.5-fold in fat-1 as compared to wildtype mice. While HETEs remained the same or decreased moderately and HDHAs increased 1- to 3-fold, HEPE formation in fat-1 tissues increased from 8- (muscle) to 44-fold (spleen). These findings indicate distinct profiles of monohydroxy lipid metabolites in different organs and strong utilization of EPA for HEPE formation, by which moderate EPA supplementation might trigger formation of biologically active EPA-derived resolvins

    Axial anomaly with the overlap-Dirac operator in arbitrary dimensions

    Get PDF
    We evaluate for arbitrary even dimensions the classical continuum limit of the lattice axial anomaly defined by the overlap-Dirac operator. Our calculational scheme is simple and systematic. In particular, a powerful topological argument is utilized to determine the value of a lattice integral involved in the calculation. When the Dirac operator is free of species doubling, the classical continuum limit of the axial anomaly in various dimensions is combined into a form of the Chern character, as expected.Comment: 9 pages, uses JHEP.cls and amsfonts.sty, the final version to appear in JHE

    Vector, Axial, Tensor and Pseudoscalar Vacuum Susceptibilities

    Get PDF
    Using a recently developed three-point formalism within the method of QCD Sum Rules we determine the vacuum susceptibilities needed in the two-point formalism for the coupling of axial, vector, tensor and pseudoscalar currents to hadrons. All susceptibilities are determined by the space-time scale of condensates, which is estimated from data for deep inelastic scattering on nucleons

    Magnetic Moments of Decuplet Baryons in Light Cone QCD

    Get PDF
    We calculate the magnetic moments of decuplet baryons containing strange quarks within the framework of light cone QCD sum rules taking into account the SU(3) flavor symmetry breaking effects. It is obtained that magnetic moments of the neutral \sso and \xis0 baryons are mainly determined by the SU(3) breaking terms. A comparison of our results on the magnetic moments of the decuplet baryons with the predictions of other approaches is presented.Comment: Latex, 20 pages, 6 figure
    • …
    corecore