851 research outputs found
The impact of 3D Printing Technology on the Supply Chain: Manufacturing and Legal Perspectives
This is the final version. Available on open access from Elsevier via the DOI in this recordAn earlier version of this paper entitled “Impact of 3D Printing Technology on Supply Chain in China” was presented at the 24th International Conference on Production Research (ICPR 2017), Poznan, Poland, 30 July–3 August 2017. It is available in ORE at: http://hdl.handle.net/10871/311773D Printing (3DP) technology has been receiving increased public attention. Many companies are seeking ways to develop new means of creating and disseminating 3DP content, in order to capture new business opportunities. However, to date the true business opportunities of 3DP have not been completely uncovered. This research explores the challenges posed in the development and deployment of 3DP and focuses on China, which is still the main manufacturing hub of the world. The main purpose of this research is to uncover the obstacles that resist mass-scale applications of 3DP. By means of empirical semi-structured interviews with 3DP companies in China, it is found that many companies can see the benefits of 3DP, but its potential has not been delivered as promised. One reason is due to the fact that 3DP has not been integrated well in the supply chain. The other reason concerns potential intellectual property issues that cannot effectively prevent counterfeiting. To tackle the above issues, several areas have been identified that could be improved further. In particular, the legal complications concerning 3D-printed content could be overcome by a licensing platform.The work is sponsored by the Arts and Humanities Research Council, and the Newton Fund, for the project “A Technological Licensing Framework for 3D printed content: A Focus on China”
A grammar-informed corpus-based sentence database for linguistic and computational studies
Author name used in this publication: Dignxu ShiRefereed conference paper2011-2012 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking
We propose the hybrid gravity-gauge mediated supersymmetry breaking where the
gravitino mass is about several GeV. The strong constraints on supersymmetry
viable parameter space from the CMS and ATLAS experiments at the LHC can be
relaxed due to the heavy colored supersymmetric particles, and it is consistent
with null results in the dark matter (DM) direct search experiments such as
XENON100. In particular, the possible maximal flavor and CP violations from the
relatively small gravity mediation may naturally account for the recent LHCb
anomaly. In addition, because the gravitino mass is around the asymmetric DM
mass, we propose the asymmetric origin of the gravitino relic density and solve
the cosmological coincident problem on the DM and baryon densities \Omega_{\rm
DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric
metastable particle (AMP) late decay. However, we show that there is no AMP
candidate in the minimal supersymmetric Standard Model (SM) due to the robust
gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized
in the well motivated supersymmetric SMs with vector-like particles or
continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass
can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio
Discovery and validation of a three-gene signature to distinguish COVID-19 and other viral infections in emergency infectious disease presentations: a case-control and observational cohort study
Summary
Background
Emergency admissions for infection often lack initial diagnostic certainty. COVID-19 has highlighted a need for novel diagnostic approaches to indicate likelihood of viral infection in a pandemic setting. We aimed to derive and validate a blood transcriptional signature to detect viral infections, including COVID-19, among adults with suspected infection who presented to the emergency department.
Methods
Individuals (aged ≥18 years) presenting with suspected infection to an emergency department at a major teaching hospital in the UK were prospectively recruited as part of the Bioresource in Adult Infectious Diseases (BioAID) discovery cohort. Whole-blood RNA sequencing was done on samples from participants with subsequently confirmed viral, bacterial, or no infection diagnoses. Differentially expressed host genes that met additional filtering criteria were subjected to feature selection to derive the most parsimonious discriminating signature. We validated the signature via RT-qPCR in a prospective validation cohort of participants who presented to an emergency department with undifferentiated fever, and a second case-control validation cohort of emergency department participants with PCR-positive COVID-19 or bacterial infection. We assessed signature performance by calculating the area under receiver operating characteristic curves (AUROCs), sensitivities, and specificities.
Findings
A three-gene transcript signature, comprising HERC6, IGF1R, and NAGK, was derived from the discovery cohort of 56 participants with bacterial infections and 27 with viral infections. In the validation cohort of 200 participants, the signature differentiated bacterial from viral infections with an AUROC of 0·976 (95% CI 0·919−1·000), sensitivity of 97·3% (85·8−99·9), and specificity of 100% (63·1−100). The AUROC for C-reactive protein (CRP) was 0·833 (0·694−0·944) and for leukocyte count was 0·938 (0·840−0·986). The signature achieved higher net benefit in decision curve analysis than either CRP or leukocyte count for discriminating viral infections from all other infections. In the second validation analysis, which included SARS-CoV-2-positive participants, the signature discriminated 35 bacterial infections from 34 SARS-CoV-2-positive COVID-19 infections with AUROC of 0·953 (0·893−0·992), sensitivity 88·6%, and specificity of 94·1%.
Interpretation
This novel three-gene signature discriminates viral infections, including COVID-19, from other emergency infection presentations in adults, outperforming both leukocyte count and CRP, thus potentially providing substantial clinical utility in managing acute presentations with infection.
Funding
National Institute for Health Research, Medical Research Council, Wellcome Trust, and EU-FP7
High School Students' Proficiency and Confidence Levels in Displaying Their Understanding of Basic Electrolysis Concepts
This study was conducted with 330 Form 4 (grade 10) students (aged 15 – 16 years) who were involved in a course of instruction on electrolysis concepts. The main purposes of this study were (1) to assess high school chemistry students’ understanding of 19 major principles of electrolysis using a recently developed 2-tier multiple-choice diagnostic instrument, the Electrolysis Diagnostic Instrument (EDI), and (2) to assess students’ confidence levels in displaying their knowledge and understanding of these electrolysis concepts. Analysis of students’ responses to the EDI showed that they displayed very limited understanding of the electrolytic processes involving molten compounds and aqueous solutions of compounds, with a mean score of 6.82 (out of a possible maximum of 17). Students were found to possess content knowledge about several electrolysis processes but did not provide suitable explanations for the changes that had occurred, with less than 45 % of students displaying scientifically acceptable understandings about electrolysis. In addition, students displayed limited confidence about making the correct selections for the items; yet, in 16 of the 17 items, the percentage of students who were confident that they had selected the correct answer to an item was higher than the actual percentage of students who correctly answered the corresponding item. The findings suggest several implications for classroom instruction on the electrolysis topic that need to be addressed in order to facilitate better understanding by students of electrolysis concepts
Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha)
Large-scale—even genome-wide—duplications have repeatedly been invoked as an explanation for major radiations. Teleosts, the most species-rich vertebrate clade, underwent a “fish-specific genome duplication” (FSGD) that is shared by most ray-finned fish lineages. We investigate here the Hox complement of the goldeye (Hiodon alosoides), a representative of Osteoglossomorpha, the most basal teleostean clade. An extensive PCR survey reveals that goldeye has at least eight Hox clusters, indicating a duplicated genome compared to basal actinopterygians. The possession of duplicated Hox clusters is uncoupled to species richness. The Hox system of the goldeye is substantially different from that of other teleost lineages, having retained several duplicates of Hox genes for which crown teleosts have lost at least one copy. A detailed analysis of the PCR fragments as well as full length sequences of two HoxA13 paralogs, and HoxA10 and HoxC4 genes places the duplication event close in time to the divergence of Osteoglossomorpha and crown teleosts. The data are consistent with—but do not conclusively prove—that Osteoglossomorpha shares the FSGD
Stromal‐Derived Factor‐1α (CXCL12) Levels Increase in Periodontal Disease
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142300/1/jper0845.pd
Diagnostic significance of CK19, TG, Ki67 and galectin-3 expression for papillary thyroid carcinoma in the northeastern region of China
<p>Abstract</p> <p>Background</p> <p>To evaluate the expression and differential diagnostic significance of CK19, TG, Ki67 and galectin-3 in papillary thyroid carcinoma (PTC) (metastatic and non metastatic), follicular adenoma and nodular goiter in patients from the northeastern part of China.</p> <p>Methods</p> <p>441 PTC specimens and 151 other benign thyroid specimens (97 cases of nodular goiter, 54 cases of nonmalignant follicular adenoma) were collected. Immunohistochemistry for CK19, TG, Ki67 and galectin-3 was performed.</p> <p>Results</p> <p>CK19, TG, Ki67 and galectin-3 expression was 96.37% (425/441), 82.77% (365/441), and 40.59% (179/441), 96.82% (427/441), respectively, for the PTC group and the expression of these markers in the benign thyroid lesions group was 25.83% (39/151), 79.47% (120/151), and 37.09% (56/151), 50.99% (77/151), respectively. The expression of CK19 and galectin-3 in PTC was much higher than that in the nonmalignant group (p < 0.05). However, the expression of TG, Ki67 did not differ among these two groups (p > 0.05). The diagnostic efficiency of CK19 and galectin-3 for PTC was 96.37% (537/592) and 84.63% (501/592). CK19 and galectin-3 expression rate in PTC was higher than that in benign disease cases.</p> <p>Conclusions</p> <p>The diagnostic efficiency of CK19 for PTC was slightly better than galectin-3. The utilization of these markers combined with morphologic evaluation may be helpful in the differential diagnosis of papillary thyroid carcinoma in the northeastern region of China.</p
Induction of Interferon-Stimulated Genes by Chlamydia pneumoniae in Fibroblasts Is Mediated by Intracellular Nucleotide-Sensing Receptors
BACKGROUND: Recognition of microorganisms by the innate immune system is mediated by pattern recognition receptors, including Toll-like receptors and cytoplasmic RIG-I-like receptors. Chlamydia, which include several human pathogenic species, are obligate intracellular gram-negative bacteria that replicate in cytoplasmic vacuoles. The infection triggers a host response contributing to both bacterial clearance and tissue damage. For instance, type I interferons (IFN)s have been demonstrated to exacerbate the course of Chlamydial lung infections in mice. METHODS/PRINCIPAL FINDINGS: Here we show that Chlamydia pneumoniae induces expression of IFN-stimulated genes (ISG)s dependent on recognition by nucleotide-sensing Toll-like receptors and RIG-I-like receptors, localized in endosomes and the cytoplasm, respectively. The ISG response was induced with a delayed kinetics, compared to virus infections, and was dependent on bacterial replication and the bacterial type III secretion system (T3SS). CONCLUSIONS/SIGNIFICANCE: Activation of the IFN response during C. pneumoniae infection is mediated by intracellular nucleotide-sensing PRRs, which operate through a mechanism dependent on the bacterial T3SS. Strategies to inhibit the chlamydial T3SS may be used to limit the detrimental effects of the type I IFN system in the host response to Chlamydia infection
CRP identifies homeostatic immune oscillations in cancer patients: a potential treatment targeting tool?
The search for a suitable biomarker which indicates immune system responses in cancer patients has been long and arduous, but a widely known biomarker has emerged as a potential candidate for this purpose. C-Reactive Protein (CRP) is an acute-phase plasma protein that can be used as a marker for activation of the immune system. The short plasma half-life and relatively robust and reliable response to inflammation, make CRP an ideal candidate marker for inflammation. The high- sensitivity test for CRP, termed Low-Reactive Protein (LRP, L-CRP or hs-CRP), measures very low levels of CRP more accurately, and is even more reliable than standard CRP for this purpose. Usually, static sampling of CRP has been used for clinical studies and these can predict disease presence or recurrence, notably for a number of cancers. We have used frequent serial L-CRP measurements across three clinical laboratories in two countries and for different advanced cancers, and have demonstrated similar, repeatable observations of a cyclical variation in CRP levels in these patients. We hypothesise that these L-CRP oscillations are part of a homeostatic immune response to advanced malignancy and have some preliminary data linking the timing of therapy to treatment success. This article reviews CRP, shows some of our data and advances the reasoning for the hypothesis that explains the CRP cycles in terms of homeostatic immune regulatory cycles. This knowledge might also open the way for improved timing of treatment(s) for improved clinical efficacy
- …