13,077 research outputs found

    Statistical Modelling of Information Sharing: Community, Membership and Content

    Full text link
    File-sharing systems, like many online and traditional information sharing communities (e.g. newsgroups, BBS, forums, interest clubs), are dynamical systems in nature. As peers get in and out of the system, the information content made available by the prevailing membership varies continually in amount as well as composition, which in turn affects all peers' join/leave decisions. As a result, the dynamics of membership and information content are strongly coupled, suggesting interesting issues about growth, sustenance and stability. In this paper, we propose to study such communities with a simple statistical model of an information sharing club. Carrying their private payloads of information goods as potential supply to the club, peers join or leave on the basis of whether the information they demand is currently available. Information goods are chunked and typed, as in a file sharing system where peers contribute different files, or a forum where messages are grouped by topics or threads. Peers' demand and supply are then characterized by statistical distributions over the type domain. This model reveals interesting critical behaviour with multiple equilibria. A sharp growth threshold is derived: the club may grow towards a sustainable equilibrium only if the value of an order parameter is above the threshold, or shrink to emptiness otherwise. The order parameter is composite and comprises the peer population size, the level of their contributed supply, the club's efficiency in information search, the spread of supply and demand over the type domain, as well as the goodness of match between them.Comment: accepted in International Symposium on Computer Performance, Modeling, Measurements and Evaluation, Juan-les-Pins, France, October-200

    Ceramic automotive Stirling engine study

    Get PDF
    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed

    Draft Genome Sequence of Mycobacterium elephantis Strain Lipa.

    Get PDF
    We report the draft genome sequence of Mycobacterium elephantis strain Lipa from a sputum sample of a patient with pulmonary disease. This is the first draft genome sequence of M. elephantis, a rapidly growing mycobacterium

    On Recognizing Transparent Objects in Domestic Environments Using Fusion of Multiple Sensor Modalities

    Full text link
    Current object recognition methods fail on object sets that include both diffuse, reflective and transparent materials, although they are very common in domestic scenarios. We show that a combination of cues from multiple sensor modalities, including specular reflectance and unavailable depth information, allows us to capture a larger subset of household objects by extending a state of the art object recognition method. This leads to a significant increase in robustness of recognition over a larger set of commonly used objects.Comment: 12 page

    Experimental maps of DNA structure at nucleotide resolution distinguish intrinsic from protein-induced DNA deformations

    Get PDF
    Recognition of DNA by proteins depends on DNA sequence and structure. Often unanswered is whether the structure of naked DNA persists in a protein–DNA complex, or whether protein binding changes DNA shape. While X-ray structures of protein–DNA complexes are numerous, the structure of naked cognate DNA is seldom available experimentally. We present here an experimental and computational analysis pipeline that uses hydroxyl radical cleavage to map, at single-nucleotide resolution, DNA minor groove width, a recognition feature widely exploited by proteins. For 11 protein–DNA complexes, we compared experimental maps of naked DNA minor groove width with minor groove width measured from X-ray co-crystal structures. Seven sites had similar minor groove widths as naked DNA and when bound to protein. For four sites, part of the DNA in the complex had the same structure as naked DNA, and part changed structure upon protein binding. We compared the experimental map with minor groove patterns of DNA predicted by two computational approaches, DNAshape and ORChID2, and found good but not perfect concordance with both. This experimental approach will be useful in mapping structures of DNA sequences for which high-resolution structural data are unavailable. This approach allows probing of protein family-dependent readout mechanisms.National Institutes of Health [R01GM106056 to R.R., T.D.T.; U54CA121852 in part to T.D.T.]; Boston University Undergraduate Research Opportunities Program [Faculty Matching Grants to D.O. and Y.J.]; USC Graduate School [Research Enhancement Fellowship and Manning Endowed Fellowship to T.P.C.]. R.R. is an Alfred P. Sloan Research Fellow. Funding for open access charge: Boston University. (R01GM106056 - National Institutes of Health; U54CA121852 - National Institutes of Health; Boston University Undergraduate Research Opportunities Program; USC Graduate School; Boston University)https://academic.oup.com/nar/article/46/5/2636/4829691?searchresult=1https://academic.oup.com/nar/article/46/5/2636/4829691?searchresult=1Published versio
    • …
    corecore