30 research outputs found

    Factors affecting the sticking of insects on modified aircraft wings

    Get PDF
    Previous work showed that the total number of insects sticking to an aluminum surface was reduced by coating the aluminum surface with elastomers. Due to a large number of possible experimental errors, no correlation between the modulus of elasticity, the elastomer, and the total number of insects sticking to a given elastomer was obtained. One of the errors assumed to be introduced during the road test is a variable insect flux so the number of insects striking one surface might be different from that striking another sample. To eliminate this source of error, the road test used to collect insects was simulated in a laboratory by development of an insect impacting technique using a pipe and high pressure compressed air. The insects are accelerated by a compressed air gun to high velocities and are then impacted with a stationary target on which the sample is mounted. The velocity of an object exiting from the pipe was determined and further improvement of the technique was achieved to obtain a uniform air velocity distribution

    Factors affecting the sticking of insects on modified aircraft wings

    Get PDF
    Past studies have shown that the surface energy of a polymer coating has an important effect on the sticking of insects to the surface. However, mechanical properties of polymer coatings such as elasticity may also be important. A further study is suggested using polymer coatings of known surface energy and modulus so that a better understanding of the mechanism of the sticking of insects to surfaces can be achieved. As the first step for the study, surface analysis and road tests were performed using elastomers having different energies and different moduli. The number of insects sticking to each elastomer was counted and compared from sample to sample and with a control (aluminum). An average height moment was also calculated and comparisons made between samples

    CDD: a Conserved Domain Database for the functional annotation of proteins

    Get PDF
    NCBI’s Conserved Domain Database (CDD) is a resource for the annotation of protein sequences with the location of conserved domain footprints, and functional sites inferred from these footprints. CDD includes manually curated domain models that make use of protein 3D structure to refine domain models and provide insights into sequence/structure/function relationships. Manually curated models are organized hierarchically if they describe domain families that are clearly related by common descent. As CDD also imports domain family models from a variety of external sources, it is a partially redundant collection. To simplify protein annotation, redundant models and models describing homologous families are clustered into superfamilies. By default, domain footprints are annotated with the corresponding superfamily designation, on top of which specific annotation may indicate high-confidence assignment of family membership. Pre-computed domain annotation is available for proteins in the Entrez/Protein dataset, and a novel interface, Batch CD-Search, allows the computation and download of annotation for large sets of protein queries. CDD can be accessed via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml

    CDD: specific functional annotation with the Conserved Domain Database

    Get PDF
    NCBI's Conserved Domain Database (CDD) is a collection of multiple sequence alignments and derived database search models, which represent protein domains conserved in molecular evolution. The collection can be accessed at http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml, and is also part of NCBI's Entrez query and retrieval system, cross-linked to numerous other resources. CDD provides annotation of domain footprints and conserved functional sites on protein sequences. Precalculated domain annotation can be retrieved for protein sequences tracked in NCBI's Entrez system, and CDD's collection of models can be queried with novel protein sequences via the CD-Search service at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. Starting with the latest version of CDD, v2.14, information from redundant and homologous domain models is summarized at a superfamily level, and domain annotation on proteins is flagged as either ‘specific’ (identifying molecular function with high confidence) or as ‘non-specific’ (identifying superfamily membership only)

    A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations

    No full text
    In this study, the role of known Parkinson�s disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families. © 2017, Springer Science+Business Media New York

    A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations

    No full text
    In this study, the role of known Parkinson�s disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families. © 2017, Springer Science+Business Media New York
    corecore