35 research outputs found

    Retinal changes in Alzheimer's disease— integrated prospects of imaging, functional and molecular advances

    Get PDF
    Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD

    Amyloid β induces early changes in the ribosomal machinery, cytoskeletal organization and oxidative phosphorylation in retinal photoreceptor cells

    Full text link
    Amyloid β (Aβ) accumulation and its aggregation is characteristic molecular feature of the development of Alzheimer’s disease (AD). More recently, Aβ has been suggested to be associated with retinal pathology associated with AD, glaucoma and drusen deposits in age related macular degeneration (AMD). In this study, we investigated the proteins and biochemical networks that are affected by Aβ in the 661 W photoreceptor cells in culture. Time and dose dependent effects of Aβ on the photoreceptor cells were determined utilizing tandem mass tag (TMT) labeling-based quantitative mass-spectrometric approach. Bioinformatic analysis of the data revealed concentration and time dependent effects of the Aβ peptide stimulation on various key biochemical pathways that might be involved in mediating the toxicity effects of the peptide. We identified increased Tau phosphorylation, GSK3β dysregulation and reduced cell viability in cells treated with Aβ in a dose and time dependent manner. This study has delineated for the first-time molecular networks in photoreceptor cells that are impacted early upon Aβ treatment and contrasted the findings with a longer-term treatment effect. Proteins associated with ribosomal machinery homeostasis, mitochondrial function and cytoskeletal organization were affected in the initial stages of Aβ exposure, which may provide key insights into AD effects on the photoreceptors and specific molecular changes induced by Aβ peptide

    Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases

    Full text link
    Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.</jats:p

    Identification of Novel Cathepsin B Inhibitors with Implications in Alzheimer’s Disease: Computational Refining and Biochemical Evaluation

    Get PDF
    Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of amyloid β (Aβ) and plaques in the brain, which are pathological hallmarks of Alzheimer’s disease (AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new anti-Alzheimer’s drugs. In this study, we have employed mixed-feature ligand-based virtual screening (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, using a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the lead compounds as virtual screening hits. These compounds share a common amide scaffold, and showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the development of novel therapeutics.</jats:p

    Retinal Proteomics of Experimental Glaucoma Model Reveal Intra-Ocular Pressure Induced Mediators of Neurodegenerative changes

    No full text
    Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.3±0.1 vs 20.8±1.6 mm Hg) by weekly microbead injections into the eye (8 weeks). The retinal tissues were harvested from control and glaucomatous eyes and protein expression changes analysed using multiplexed quantitative proteomics approach. Immunofluorescence was performed for selected protein markers for data validation. Our study identified 4304 proteins in the rat retinas. Out of these, 139 proteins were downregulated (≤0.83) while expression of 109 proteins was upregulated (≥1.2-fold change) under glaucoma conditions (p≤0.05). Computational analysis revealed reduced expression of proteins associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, cytoskeleton and actin filament organisation, along with increased expression coagulation cascade, apoptosis, oxidative stress and RNA processing markers. Further functional network analysis highlighted the differential modulation of nuclear receptor signalling, cellular survival, protein synthesis, transport and cellular assembly pathways. Alterations in crystallin family, glutathione metabolism and mitochondrial dysfunction associated proteins shared similarities between the animal model of glaucoma and the human disease condition. In contrast, the activation of the classical complement pathway and upregulation of cholesterol transport proteins, were exclusive to the human glaucoma. These findings provide insights into the neurodegenerative mechanisms that are specifically affected in the retina in response to chronically elevated IOP

    Retinal Proteomics of Experimental Glaucoma Model Reveal Intra-Ocular Pressure Induced Mediators of Neurodegenerative changes

    No full text
    Current evidence suggests that exposure to chronically induced intraocular pressure (IOP) leads to neurodegenerative changes in the inner retina. This study aimed to determine retinal proteomic alterations in a rat model of glaucoma and compared findings with human retinal proteomics changes in glaucoma reported previously. We developed an experimental glaucoma rat model by subjecting the rats to increased IOP (9.3±0.1 vs 20.8±1.6 mm Hg) by weekly microbead injections into the eye (8 weeks). The retinal tissues were harvested from control and glaucomatous eyes and protein expression changes analysed using multiplexed quantitative proteomics approach. Immunofluorescence was performed for selected protein markers for data validation. Our study identified 4304 proteins in the rat retinas. Out of these, 139 proteins were downregulated (≤0.83) while expression of 109 proteins was upregulated (≥1.2-fold change) under glaucoma conditions (p≤0.05). Computational analysis revealed reduced expression of proteins associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, cytoskeleton and actin filament organisation, along with increased expression coagulation cascade, apoptosis, oxidative stress and RNA processing markers. Further functional network analysis highlighted the differential modulation of nuclear receptor signalling, cellular survival, protein synthesis, transport and cellular assembly pathways. Alterations in crystallin family, glutathione metabolism and mitochondrial dysfunction associated proteins shared similarities between the animal model of glaucoma and the human disease condition. In contrast, the activation of the classical complement pathway and upregulation of cholesterol transport proteins, were exclusive to the human glaucoma. These findings provide insights into the neurodegenerative mechanisms that are specifically affected in the retina in response to chronically elevated IOP

    Exploring the molecular interactions of 7,8-dihydroxyflavone and its derivatives with TrkB and VEGFR2 proteins

    No full text
    7,8-dihydroxyflavone (7,8-DHF) is a TrkB receptor agonist, and treatment with this flavonoid derivative brings about an enhanced TrkB phosphorylation and promotes downstream cellular signalling. Flavonoids are also known to exert an inhibitory effect on the vascular endothelial growth factor receptor (VEGFR) family of tyrosine kinase receptors. VEGFR2 is one of the important receptors involved in the regulation of vasculogenesis and angiogenesis and has also been implicated to exhibit various neuroprotective roles. Its upregulation and uncontrolled activity is associated with a range of pathological conditions such as age-related macular degeneration and various proliferative disorders. In this study, we investigated molecular interactions of 7,8-DHF and its derivatives with both the TrkB receptor as well as VEGFR2. Using a combination of molecular docking and computational mapping tools involving molecular dynamics approaches we have elucidated additional residues and binding energies involved in 7,8-DHF interactions with the TrkB Ig2 domain and VEGFR2. Our investigations have revealed for the first time that 7,8-DHF has dual biochemical action and its treatment may have divergent effects on the TrkB via its extracellular Ig2 domain and on the VEGFR2 receptor through the intracellular kinase domain. Contrary to its agonistic effects on the TrkB receptor, 7,8-DHF was found to downregulate VEGFR2 phosphorylation both in 661W photoreceptor cells and in retinal tissue
    corecore