28 research outputs found

    Lightweight Computation Tree Tracing for Lazy Functional Languages

    Get PDF
    A computation tree of a program execution describes computations of functions and their dependencies. A computation tree describes how a program works and is at the heart of algorithmic debugging. To generate a computation tree, existing algorithmic debuggers either use a complex implementation or yield a less informative approximation. We present a method for lazy functional languages that requires only a simple tracing library to generate a detailed computation tree. With our algorithmic debugger a programmer can debug any Haskell program by only importing our library and annotating suspected functions

    Algorithmic Debugging of Real-World Haskell Programs: Deriving Dependencies from the Cost Centre Stack

    Get PDF
    Existing algorithmic debuggers for Haskell require a transformation of all modules in a program, even libraries that the user does not want to debug and which may use language features not supported by the debugger. This is a pity, because a promising ap- proach to debugging is therefore not applicable to many real-world programs. We use the cost centre stack from the Glasgow Haskell Compiler profiling environment together with runtime value observations as provided by the Haskell Object Observation Debugger (HOOD) to collect enough information for algorithmic debugging. Program annotations are in suspected modules only. With this technique algorithmic debugging is applicable to a much larger set of Haskell programs. This demonstrates that for functional languages in general a simple stack trace extension is useful to support tasks such as profiling and debugging

    Maximal Sharing in the Lambda Calculus with letrec

    Full text link
    Increasing sharing in programs is desirable to compactify the code, and to avoid duplication of reduction work at run-time, thereby speeding up execution. We show how a maximal degree of sharing can be obtained for programs expressed as terms in the lambda calculus with letrec. We introduce a notion of `maximal compactness' for lambda-letrec-terms among all terms with the same infinite unfolding. Instead of defined purely syntactically, this notion is based on a graph semantics. lambda-letrec-terms are interpreted as first-order term graphs so that unfolding equivalence between terms is preserved and reflected through bisimilarity of the term graph interpretations. Compactness of the term graphs can then be compared via functional bisimulation. We describe practical and efficient methods for the following two problems: transforming a lambda-letrec-term into a maximally compact form; and deciding whether two lambda-letrec-terms are unfolding-equivalent. The transformation of a lambda-letrec-term LL into maximally compact form L0L_0 proceeds in three steps: (i) translate L into its term graph G=[[L]]G = [[ L ]]; (ii) compute the maximally shared form of GG as its bisimulation collapse G0G_0; (iii) read back a lambda-letrec-term L0L_0 from the term graph G0G_0 with the property [[L0]]=G0[[ L_0 ]] = G_0. This guarantees that L0L_0 and LL have the same unfolding, and that L0L_0 exhibits maximal sharing. The procedure for deciding whether two given lambda-letrec-terms L1L_1 and L2L_2 are unfolding-equivalent computes their term graph interpretations [[L1]][[ L_1 ]] and [[L2]][[ L_2 ]], and checks whether these term graphs are bisimilar. For illustration, we also provide a readily usable implementation.Comment: 18 pages, plus 19 pages appendi

    Combining Static and Dynamic Contract Checking for Curry

    Full text link
    Static type systems are usually not sufficient to express all requirements on function calls. Hence, contracts with pre- and postconditions can be used to express more complex constraints on operations. Contracts can be checked at run time to ensure that operations are only invoked with reasonable arguments and return intended results. Although such dynamic contract checking provides more reliable program execution, it requires execution time and could lead to program crashes that might be detected with more advanced methods at compile time. To improve this situation for declarative languages, we present an approach to combine static and dynamic contract checking for the functional logic language Curry. Based on a formal model of contract checking for functional logic programming, we propose an automatic method to verify contracts at compile time. If a contract is successfully verified, dynamic checking of it can be omitted. This method decreases execution time without degrading reliable program execution. In the best case, when all contracts are statically verified, it provides trust in the software since crashes due to contract violations cannot occur during program execution.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Typer inference builds a short cut to deforestation

    No full text

    Testing and Tracing Lazy Functional Programs using QuickCheck and Hat

    Get PDF
    It is a very undesirable situation that today’s software often contains errors. One motivation for using a functional programming language is that it is more difficult (or even impossible) to make low-level mistakes, and it is easier to reason about programs. But even the most advanced functional programmers are not infallible; they misunderstand the properties of their own programs, or those of others, and so commit errors

    Observing Functional Logic Computations

    Get PDF
    A lightweight approach to debugging functional logic programs by observations is presented, implemented for the language Curry. The Curry Object Observation System (COOSy) comprises a portable library plus a viewing tool. A programmer can observe data structures and functions by annotating expressions in his program. The possibly partial values of observed expressions that are computed during program execution are recorded in a trace file, including information on non-deterministic choices and logical variables. A separate viewing tool displays the trace content. COOSy covers all aspects of modern functional logic multiparadigm languages such as lazy evaluation, higher order functions, non-deterministic search, logical variables, concurrency and constraints. Both use and implementation of COOSy are described

    Typed Directional Composable Editors in iTasks

    No full text
    corecore