7 research outputs found

    Electron self-injection threshold for the tandem-pulse laser wakefield accelerator

    Full text link
    A controllable injection scheme is key to producing high quality laser-driven electron beams and X-rays. Self-injection is the most straightforward scheme leading to high current and peak energies, but is susceptible to variations in laser parameters and target characteristics. In this work improved control of electron self-injection in the nonlinear cavity regime using two laser-pulses propagating in tandem is investigated. In particular the advantages of the tandem-pulse scheme in terms of injection threshold, electron energy and beam properties in a regime relevant to betatron radiation are demonstrated. Moreover it is shown that the laser power threshold for electron self-injection can be reduced by up to a factor of two compared to the standard, single-pulse wakefield scheme.Comment: 11 pages, 9 figures, submitted for publication (2019

    Enhanced betatron-radiation energy using two collinear laser pulses

    No full text
    A new self-injection scheme is proposed for the laser wakefield accelerator in the nonlinear (cavity) regime using a pair of matched, copropagating laser pulses which yields a pC electron bunch. By tuning their relative delay and intensity, the subsequent betatron radiation energy can be considerably (×3)(\times 3) enhanced compared to the single pulse scheme for the same total energy. A new condition for the optimal bubble size is derived and verified by particle-in-cell simulations, demonstrating the advantages of the double-pulse scheme for self-injection

    Electron self-injection threshold for the tandem-pulse laser wakefield accelerator

    No full text
    A controllable injection scheme is key to producing high quality laser-driven electron beams and X-rays. Self-injection is the most straightforward scheme leading to high current and peak energies, but is susceptible to variations in laser parameters and target characteristics. In this work improved control of electron self-injection in the nonlinear cavity regime using two laser-pulses propagating in tandem is investigated. In particular the advantages of the tandem-pulse scheme in terms of injection threshold, electron energy and beam properties in a regime relevant to betatron radiation are demonstrated. Moreover it is shown that the laser power threshold for electron self-injection can be reduced by up to a factor of two compared to the standard, single-pulse wakefield scheme

    Theory of circularly polarized harmonic generation using bi-colour lasers in underdense plasmas

    No full text
    Circularly polarized (CP) extreme ultraviolet- and x-ray radiation is an essential tool for analyzing the magnetic properties of materials. Elliptically polarized high harmonic generation (HHG) has been demonstrated by focusing bi-chromatic (800 + 400 nm wavelengths), counter-rotating CP laser pulses into gas targets (Fleischer et al 2014 Nat. Photonics 8 543). More recent theoretical studies indicate that a bi-circular laser driver can also work in both under- and overdense plasmas with analogous selection rules to those in gases: for example, every third harmonic is suppressed and adjacent harmonics have opposite helicity for counter-polarized CP ω0 and 2ω0 pumps. In this work, an analytical theory of bi-circular HHG from underdense plasmas is formulated which provides quantitative predictions of harmonic efficiency scaling, selectivity and helicity for both co- and counter-polarized drivers of arbitrary frequency ratio. This is compared to a fully non-linear, one-dimensional fluid model and particle-in-cell simulations, showing good agreement with both

    Laser-induced acceleration of Helium ions from unpolarized gas jets

    No full text
    In order to develop a laser-driven spin-polarized 3He-ion beam source available for nuclear-physics experiments as well as for the investigation of polarized nuclear fusion, several challenges have to be overcome. Apart from the provision of a properly polarized 3He gas-jet target, one of the biggest milestones is the demonstration of the general feasibility of laser-induced ion acceleration out of gas-jet targets. Of particular importance is the knowledge about the main ion-emission angles as well as the achievable ion-energy spectra (dependent on the optimal set of laser and target parameters). We report on the results of such a feasibility study performed at PHELIX, GSI Darmstadt. Both 3He- and 4He-gas jets (n_gas ∼ 10^19 cm−3) were illuminated with high-intensity laser pulses, I_L ~ O(10^19 W cm^-2). The main ion-emission angles could be identified (±90° with respect to the laser-propagation direction) and the ion-energy spectra for all ion species could be extracted: for the optimal laser and target parameters, the high-energy cut-offs for He^2+,1+ ions were 4.65 MeV (with a normalized energy uncertainty of Delta E E^-1 = 0.033) and 3.27 MeV (Delta E E^-1 = 0.055), respectively
    corecore