39 research outputs found

    Shortwave infrared imaging and spectroscopy in the time and spatial frequency domains

    Get PDF
    Please click Additional Files below to see the full abstract

    Smooth muscle cells orchestrate the endothelial cell response to flow and injury

    Get PDF
    available in PMC 2011 May 25Background— Local modulation of vascular mammalian target of rapamycin (mTOR) signaling reduces smooth muscle cell (SMC) proliferation after endovascular interventions but may be associated with endothelial cell (EC) toxicity. The trilaminate vascular architecture juxtaposes ECs and SMCs to enable complex paracrine coregulation but shields SMCs from flow. We hypothesized that flow differentially affects mTOR signaling in ECs and SMCs and that SMCs regulate mTOR in ECs. Methods and Results— SMCs and/or ECs were exposed to coronary artery flow in a perfusion bioreactor. We demonstrated by flow cytometry, immunofluorescence, and immunoblotting that EC expression of phospho-S6 ribosomal protein (p-S6RP), a downstream target of mTOR, was doubled by flow. Conversely, S6RP in SMCs was growth factor but not flow responsive, and SMCs eliminated the flow sensitivity of ECs. Temsirolimus, a sirolimus analog, eliminated the effect of growth factor on SMCs and of flow on ECs, reducing p-S6RP below basal levels and inhibiting endothelial recovery. EC p-S6RP expression in stented porcine arteries confirmed our in vitro findings: Phosphorylation was greatest in ECs farthest from intact SMCs in metal stented arteries and altogether absent after sirolimus stent elution. Conclusions— The mTOR pathway is activated in ECs in response to luminal flow. SMCs inhibit this flow-induced stimulation of endothelial mTOR pathway. Thus, we now define a novel external stimulus regulating phosphorylation of S6RP and another level of EC-SMC crosstalk. These interactions may explain the impact of local antiproliferative delivery that targets SMC proliferation and suggest that future stents integrate design influences on flow and drug effects on their molecular targets.National Institutes of Health (U.S.) (NIH/NIGMS RO1/GM049039)National Institutes of Health (U.S.) (NIH-NIDDK (1K08DK080946))Fundación Empresas IQSBarcelona Chamber of Commerc

    Intrinsic Coating Morphology Modulates Acute Drug Transfer in Drug-Coated Balloon Therapy

    Get PDF
    The hallmark of drug-coated balloon (DCB) therapy for the treatment of peripheral vascular disease is that it allows for reopening of the narrowed lumen and local drug delivery without the need for a permanent indwelling metal implant such as a stent. Current DCB designs rely on transferring drugs such as paclitaxel to the arterial vessel using a variety of biocompatible excipients coated on the balloons. Inherent procedural challenges, along with limited understanding of the interactions between the coating and the artery, interactions between the coating and the balloon as well as site-specific differences, have led to DCB designs with poor drug delivery efficiency. Our study is focused on two clinically significant DCB excipients, urea and shellac, and uses uniaxial mechanical testing, scanning electron microscopy (SEM), and biophysical modeling based on classic Hertz theory to elucidate how coating microstructure governs the transmission of forces at the coating-artery interface. SEM revealed shellac-based coatings to contain spherical-shaped microstructural elements whereas urea-based coatings contained conical-shaped microstructural elements. Our model based on Hertz theory showed that the interactions between these intrinsic coating elements with the arterial wall were fundamentally different, even when the same external force was applied by the balloon on the arterial wall. Using two orthogonal cell-based assays, our study also found differential viability when endothelial cells were exposed to titrated concentrations of urea and shellac, further highlighting the need to maximize coating transfer efficiency in the context of DCB therapies. Our results underscore the significance of the excipient in DCB design and suggest that coating microstructure modulates acute drug transfer during device deployment

    Prevalence of central venous stenosis among Black and White ESKD patients with dysfunctional dialysis access

    Full text link
    In the United States, significant racial and ethnic disparities exist in chronic kidney disease (CKD) and its management. Hemodialysis constitutes the main stay of renal replacement therapy for end-stage kidney disease (ESKD), which is initiated using central venous catheters (CVC) in most CKD patients in the United States. Black ESKD patients have higher usage and greater time on CVC for hemodialysis compared to White patients. This trend places Black patients at a potentially higher risk for CVC-related complications such as central venous stenosis (CVS). We posited that Black patients would have a higher prevalence and a greater risk of CVS. A retrospective review was performed of ESKD patients who underwent a fistulogram for dialysis access malfunction. CVS was defined as \u3e 50% stenosis in the central veins. Fistulograms of 428 ESKD patients were adjudicated, and CVS was noted in 167 of these patients. Of the entire cohort, 370 fistulograms belonged to self-reported unique Black and White ESKD patients, of whom 137 patients were noted to have CVS. There was no difference in the of CVS between Black (40%) and White (41%) ESKD patients. However, a higher severity of stenosis (\u3e70%) (P = 0.03) was noted in White ESKD patients. An unadjusted model showed a significant association between CVS and cardiovascular disease and the use of CVCs. The risk-adjusted model showed a significant association between diabetes and CVS. Unlike arterial stenotic lesions, this work for the first time demonstrated higher prevalence of severe venous stenotic lesions in White ESKD patients and linked diabetes to stenotic venous disease. This work paves the way for future studies investigating the risk and influence of race and ethnicity on CVS using a larger and diverse data set

    Intravenous Sodium Thiosulphate for Calciphylaxis of Chronic Kidney Disease:A Systematic Review and Meta-analysis

    Get PDF
    Importance: Calciphylaxis is a rare disease with high mortality mainly involving patients with chronic kidney disease (CKD). Sodium thiosulphate (STS) has been used as an off-label therapeutic in calciphylaxis, but there is a lack of clinical trials and studies that demonstrate its effect compared with those without STS treatment. Objective: To perform a meta-analysis of the cohort studies that provided data comparing outcomes among patients with calciphylaxis treated with and without intravenous STS. Data Sources: PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov were searched using relevant terms and synonyms including sodium thiosulphate and calci∗ without language restriction. Study Selection: The initial search was for cohort studies published before August 31, 2021, that included adult patients diagnosed with CKD experiencing calciphylaxis and could provide a comparison between patients treated with and without intravenous STS. Studies were excluded if they reported outcomes only from nonintravenous administration of STS or if the outcomes for CKD patients were not provided. Data Extraction and Synthesis: Random-effects models were performed. The Egger test was used to measure publication bias. Heterogeneity was assessed using the I2test. Main Outcomes and Measures: Skin lesion improvement and survival, synthesized as ratio data by a random-effects empirical Bayes model. Results: Among the 5601 publications retrieved from the targeted databases, 19 retrospective cohort studies including 422 patients (mean age, 57 years; 37.3% male) met the eligibility criteria. No difference was observed in skin lesion improvement (12 studies with 110 patients; risk ratio, 1.23; 95% CI, 0.85-1.78) between the STS and the comparator groups. No difference was noted for the risk of death (15 studies with 158 patients; risk ratio, 0.88; 95% CI, 0.70-1.10) and overall survival using time-to-event data (3 studies with 269 participants; hazard ratio, 0.82; 95% CI, 0.57-1.18). In meta-regression, lesion improvement associated with STS negatively correlated with publication year, implying that recent studies are more likely to report a null association compared with past studies (coefficient = -0.14; P =.008). Conclusions and Relevance: Intravenous STS was not associated with skin lesion improvement or survival benefit in patients with CKD experiencing calciphylaxis. Future investigations are warranted to examine the efficacy and safety of therapies for patients with calciphylaxis.</p

    Towards minimally-invasive, quantitative assessment of chronic kidney disease using optical spectroscopy

    Get PDF
    The universal pathologic features implicated in the progression of chronic kidney disease (CKD) are interstitial fibrosis and tubular atrophy (IFTA). Current methods of estimating IFTA are slow, labor-intensive and fraught with variability and sampling error, and are not quantitative. As such, there is pressing clinical need for a less-invasive and faster method that can quantitatively assess the degree of IFTA. We propose a minimally-invasive optical method to assess the macro-architecture of kidney tissue, as an objective, quantitative assessment of IFTA, as an indicator of the degree of kidney disease. The method of elastic-scattering spectroscopy (ESS) measures backscattered light over the spectral range 320-900 nm and is highly sensitive to micromorphological changes in tissues. Using two discrete mouse models of CKD, we observed spectral trends of increased scattering intensity in the near-UV to short-visible region (350-450 nm), relative to longer wavelengths, for fibrotic kidneys compared to normal kidney, with a quasi-linear correlation between the ESS changes and the histopathology-determined degree of IFTA. These results suggest the potential of ESS as an objective, quantitative and faster assessment of IFTA for the management of CKD patients and in the allocation of organs for kidney transplantation.T32 HL007224 - NHLBI NIH HHS; R01 CA175382 - NCI NIH HHS; T32 GM086308 - NIGMS NIH HHS; R01 HL132325 - NHLBI NIH HHS; UL1 TR001430 - NCATS NIH HHSAccepted manuscriptPublished versio

    Deep-learning-driven quantification of interstitial fibrosis in digitized kidney biopsies

    Full text link
    Interstitial fibrosis and tubular atrophy (IFTA) on a renal biopsy are strong indicators of disease chronicity and prognosis. Techniques that are typically used for IFTA grading remain manual, leading to variability among pathologists. Accurate IFTA estimation using computational techniques can reduce this variability and provide quantitative assessment. Using trichrome-stained whole-slide images (WSIs) processed from human renal biopsies, we developed a deep-learning framework that captured finer pathologic structures at high resolution and overall context at the WSI level to predict IFTA grade. WSIs (n = 67) were obtained from The Ohio State University Wexner Medical Center. Five nephropathologists independently reviewed them and provided fibrosis scores that were converted to IFTA grades: ≤10% (none or minimal), 11% to 25% (mild), 26% to 50% (moderate), and >50% (severe). The model was developed by associating the WSIs with the IFTA grade determined by majority voting (reference estimate). Model performance was evaluated on WSIs (n = 28) obtained from the Kidney Precision Medicine Project. There was good agreement on the IFTA grading between the pathologists and the reference estimate (κ = 0.622 ± 0.071). The accuracy of the deep-learning model was 71.8% ± 5.3% on The Ohio State University Wexner Medical Center and 65.0% ± 4.2% on Kidney Precision Medicine Project data sets. Our approach to analyzing microscopic- and WSI-level changes in renal biopsies attempts to mimic the pathologist and provides a regional and contextual estimation of IFTA. Such methods can assist clinicopathologic diagnosis.U01 DK085660 - NIDDK NIH HHS; RF1 AG062109 - NIA NIH HHS; R21 CA253498 - NCI NIH HHS; R21 DK119751 - NIDDK NIH HHS; R01 HL132325 - NHLBI NIH HHS; UL1 TR001430 - NCATS NIH HHS; R56 AG062109 - NIA NIH HHS; R21 DK119740 - NIDDK NIH HHShttps://www.medrxiv.org/content/10.1101/2021.01.03.21249179v1.full.pd

    A painful lesson from the COVID-19 pandemic: the need for broad-spectrum, host-directed antivirals

    No full text
    While the COVID-19 pandemic has spurred intense research and collaborative discovery worldwide, the development of a safe, effective, and targeted antiviral from the ground up is time intensive. Therefore, most antiviral discovery efforts are focused on the re-purposing of clinical stage or approved drugs. While emerging data on drugs undergoing COVID-19 repurpose are intriguing, there is an undeniable need to develop broad-spectrum antivirals to prevent future viral pandemics of unknown origin. The ideal drug to curtail rapid viral spread would be a broad-acting agent with activity against a wide range of viruses. Such a drug would work by modulating host-proteins that are often shared by multiple virus families thereby enabling preemptive drug development and therefore rapid deployment at the onset of an outbreak. Targeting host-pathways and cellular proteins that are hijacked by viruses can potentially offer broad-spectrum targets for the development of future antiviral drugs. Such host-directed antivirals are also likely to offer a higher barrier to the development and selection of drug resistant mutations. Given that most approved antivirals do not target host-proteins, we reinforce the need for the development of such antivirals that can be used in pre- and post-exposure populations

    Janus Kinase Signaling Pathway and Its Role in COVID-19 Inflammatory, Vascular, and Thrombotic Manifestations

    No full text
    Acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection continues to be a worldwide public health crisis. Among the several severe manifestations of this disease, thrombotic processes drive the catastrophic organ failure and mortality in these patients. In addition to a well-established cytokine storm associated with the disease, perturbations in platelets, endothelial cells, and the coagulation system are key in triggering systemic coagulopathy, involving both the macro- and microvasculatures of different organs. Of the several mechanisms that might contribute to dysregulation of these cells following SARS-CoV-2 infection, the current review focuses on the role of activated Janus kinase (JAK) signaling in augmenting thrombotic processes and organ dysfunction. The review concludes with presenting the current understanding and emerging controversies concerning the potential therapeutic applications of JAK inhibitors for ameliorating the inflammation-thrombosis phenotype in COVID-19 patients

    c-Cbl: An Important Regulator and a Target in Angiogenesis and Tumorigenesis

    No full text
    Casitas B lineage lymphoma (c-Cbl) is a multifunctional protein with a ubiquitin E3 ligase activity capable of degrading diverse sets of proteins. Although previous work had focused mainly on c-Cbl mutations in humans with hematological malignancies, recent emerging evidence suggests a critical role of c-Cbl in angiogenesis and human solid organ tumors. The combination of its unique structure, modular function, and ability to channelize cues from a rich network of signaling cascades, empowers c-Cbl to assume a central role in these disease models. This review consolidates the structural and functional insights based on recent studies that highlight c-Cbl as a target with tantalizing therapeutic potential in various models of angiogenesis and tumorigenesis
    corecore