301 research outputs found
Separability and entanglement of four-mode Gaussian states
The known Peres-Horodecki criterion and scaling criterion of separability are
considered on examples of three-mode and four-mode Gaussian states of
electromagnetic field. It is shown that the principal minors of the photon
quadrature dispersion matrix are sensitive to the change of scaling parameters.
An empirical observation has shown that the bigger the modulus of negative
principal minors, the more entangled the state.Comment: 14 pages, 11 figure
Scaling Separability Criterion: Application To Gaussian States
We introduce examples of three- and four-mode entangled Gaussian mixed states
that are not detected by the scaling and Peres-Horodecki separability criteria.
The presented modification of the scaling criterion resolves this problem. Also
it is shown that the new criterion reproduces the main features of the scaling
pictures for different cases of entangled states, while the previous versions
lead to completely different outcomes. This property of the presented scheme is
evidence of its higher generality.Comment: 7 pages, 4 figure
Qubit portrait of the photon-number tomogram and separability of two-mode light states
In view of the photon-number tomograms of two-mode light states, using the
qubit-portrait method for studying the probability distributions with infinite
outputs, the separability and entanglement detection of the states are studied.
Examples of entangled Gaussian state and Schr\"{o}dinger cat state are
discussed.Comment: 20 pages, 6 figures, TeX file, to appear in Journal of Russian Laser
Researc
Frank-Condon principle and adjustment of optical waveguides with nonhomogeneous refractive indices
The adjustment of two different selfocs is considered using both exact
formulas for the mode-connection coefficients expressed in terms of Hermite
polynomials of several variables and a qualitative approach based on the
Frank-Condon principle. Several examples of the refractive-index dependence are
studied and illustrative plots for these examples are presented. The connection
with the tomographic approach to quantum states of a two-dimensional oscillator
and the Frank-Condon factors is established.Comment: 8 pages, 4 figures, published version (layout of figures changed,
typos corrected, references added
Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011â2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2Ξ23=0.51±0.05 and Îm232=2.41±0.07Ă10â3ââeV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties
Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube
The Galactic plane, harboring a diffuse neutrino flux, is a particularly
interesting target to study potential cosmic-ray acceleration sites. Recent
gamma-ray observations by HAWC and LHAASO have presented evidence for multiple
Galactic sources that exhibit a spatially extended morphology and have energy
spectra continuing beyond 100 TeV. A fraction of such emission could be
produced by interactions of accelerated hadronic cosmic rays, resulting in an
excess of high-energy neutrinos clustered near these regions. Using 10 years of
IceCube data comprising track-like events that originate from charged-current
muon neutrino interactions, we perform a dedicated search for extended neutrino
sources in the Galaxy. We find no evidence for time-integrated neutrino
emission from the potential extended sources studied in the Galactic plane. The
most significant location, at 2.6 post-trials, is a 1.7 sized
region coincident with the unidentified TeV gamma-ray source 3HWC J1951+266. We
provide strong constraints on hadronic emission from several regions in the
Galaxy.Comment: 13 pages, 4 figures, 5 tables including an appendix. Accepted for
publication in Astrophysical Journa
Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory
The IceCube Neutrino Observatory has been continuously taking data to search for ( â )0.5 10 s long neutrino bursts
since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of
exploding, it will be detectable via the ( )10 MeV neutrino burst emitted during the collapse. We discuss a search for
such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking
and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order
to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an
8.8 solar mass progenitor collapsing to an OâNeâMg core. Conservative assumptions on the effects of neutrino
oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect
such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing
a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of â25 kpc
was determined to be 0.23 yrâ1
. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae
will be detectable by IceCube, unless external information on the burst time is available. We determined a model-
independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum
Measurement of Atmospheric Neutrino Mixing with Improved IceCube DeepCore Calibration and Data Processing
We describe a new data sample of IceCube DeepCore and report on the latest
measurement of atmospheric neutrino oscillations obtained with data recorded
between 2011-2019. The sample includes significant improvements in data
calibration, detector simulation, and data processing, and the analysis
benefits from a detailed treatment of systematic uncertainties, with
significantly higher level of detail since our last study. By measuring the
relative fluxes of neutrino flavors as a function of their reconstructed
energies and arrival directions we constrain the atmospheric neutrino mixing
parameters to be and , assuming a normal mass ordering. The
resulting 40\% reduction in the error of both parameters with respect to our
previous result makes this the most precise measurement of oscillation
parameters using atmospheric neutrinos. Our results are also compatible and
complementary to those obtained using neutrino beams from accelerators, which
are obtained at lower neutrino energies and are subject to different sources of
uncertainties
IceCat-1: The IceCube Event Catalog of Alert Tracks
We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert\u27s reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT
- âŠ