27 research outputs found
Genome-wide chromatin interaction map for Trypanosoma cruzi
Trypanosomes are eukaryotic, unicellular parasites, such as Trypanosoma brucei, which causes sleeping sickness, and Trypanosoma cruzi, which causes Chagas disease. Genomes of these parasites comprise core regions and species-specific disruptive regions that encode multigene families of surface glycoproteins. Few transcriptional regulators have been identified in these parasites, and the role of spatial organization of the genome in gene expression is unclear. Here we mapped genome-wide chromatin interactions in T. cruzi using chromosome conformation capture (Hi-C), and we show that the core and disruptive regions form three-dimensional chromatin compartments named C and D. These chromatin compartments differ in levels of DNA methylation, nucleosome positioning and chromatin interactions, affecting genome expression dynamics. Our data reveal that the trypanosome genome is organized into chromatin-folding domains and transcription is affected by the local chromatin structure. We propose a model in which epigenetic mechanisms affect gene expression in trypanosomes.Agencia Nacional de Investigación e InnovaciónComisión Sectorial de Investigación Científica, Universidad de la RepúblicaResearch Council United Kingdom Grand Challenges Research Funder (GCRF)Fondo para la Convergencia Estructural del Mercado Común del Sur (FOCEM
Biology of the <em>Trypanosoma cruzi</em> Genome
The genome of Trypanosoma cruzi was first made available in 2005, and the intrinsic genome complexity of this parasite has hindered high-quality genome assembly and annotation. Recent technological developments in long read sequencing allowed to circumvent this problem, showing very interesting features in the genome architecture of T. cruzi, allowing to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements), and the complexity of multigene families implied in host-parasite interactions. The genome of T. cruzi is composed of a “core compartment” and a “disruptive compartment” which exhibit opposite GC content and gene composition, with high differences on their regulatory regions. The novel tandem and dispersed repetitive sequences identified, in addition to recombination events, allows to conclude that genome plasticity is a key survival strategy during its complex life cycle
Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi
Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi's genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a 'core compartment' and a 'disruptive compartment' which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes
Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells
Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response), a great number of transcription factors (including the majority of NFκB family members), and host metabolism (cholesterol, fatty acids, and phospholipids). These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination
Overoxidation and Oligomerization of Trypanosoma cruzi Cytosolic and Mitochondrial Peroxiredoxins
Peroxiredoxins (Prxs) have been shown to be important enzymes for trypanosomatids, counteracting oxidative stress and promoting cell infection and intracellular survival. In this work, we investigate the in vitro sensitivity to overoxidation and the overoxidation dynamics of Trypanosoma cruzi Prxs in parasites in culture and in the infection context. We showed that recombinant m-TXNPx, in contrast to what was observed for c-TXNPx, exists as low molecular mass forms in the overoxidized state. We observed that T. cruzi Prxs were overoxidized in epimastigotes treated with oxidants, and a significant proportion of the overoxidized forms were still present at least 24 h after treatment suggesting that these forms are not actively reversed. In in vitro infection experiments, we observed that Prxs are overoxidized in amastigotes residing in infected macrophages, demonstrating that inactivation of at least part of the Prxs by overoxidation occurs in a physiological context. We have shown that m-TXNPx has a redox-state-dependent chaperone activity. This function may be related to the increased thermotolerance observed in m-TXNPx-overexpressing parasites. This study suggests that despite the similarity between protozoan and mammalian Prxs, T. cruzi Prxs have different oligomerization dynamics and sensitivities to overoxidation, which may have implications for their function in the parasite life cycle and infection process.Fil: Piñeyro, María Dolores. Instituto Pasteur de Montevideo; UruguayFil: Chiribao, María Laura. Instituto Pasteur de Montevideo; UruguayFil: Arias, Diego Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Robello, Carlos. Instituto Pasteur de Montevideo; UruguayFil: Parodi Talice, Adriana. Instituto Pasteur de Montevideo; Urugua
Redox sensitive human mitochondrial aconitase and its interaction with frataxin: In vitro and in silico studies confirm that it takes two to tango
Mitochondrial aconitase (ACO2) has been postulated as a redox sensor in the tricarboxylic acid cycle. Its high sensitivity towards reactive oxygen and nitrogen species is due to its particularly labile [4Fe–4S]2+ prosthetic group which yields an inactive [3Fe–4S]+ cluster upon oxidation. Moreover, ACO2 was found as a main oxidant target during aging and in pathologies where mitochondrial dysfunction is implied. Herein, we report the expression and characterization of recombinant human ACO2 and its interaction with frataxin (FXN), a protein that participates in the de novo biosynthesis of Fe–S clusters. A high yield of pure ACO2 (≥99%, 22 ± 2 U/mg) was obtained and kinetic parameters for citrate, isocitrate, and cis-aconitate were determined. Superoxide, carbonate radical, peroxynitrite, and hydrogen peroxide reacted with ACO2 with second-order rate constants of 108, 108, 105, and 102 M−1 s−1, respectively. Temperature-induced unfolding assessed by tryptophan fluorescence of ACO2 resulted in apparent melting temperatures of 51.1 ± 0.5 and 43.6 ± 0.2 °C for [4Fe–4S]2+ and [3Fe–4S]+ states of ACO2, sustaining lower thermal stability upon cluster oxidation. Differences in protein dynamics produced by the Fe–S cluster redox state were addressed by molecular dynamics simulations. Reactivation of [3Fe–4S]+-ACO2 by FXN was verified by activation assays and direct iron-dependent interaction was confirmed by protein-protein interaction ELISA and fluorescence spectroscopic assays. Multimer modeling and protein-protein docking predicted an ACO2-FXN complex where the metal ion binding region of FXN approaches the [3Fe–4S]+ cluster, supporting that FXN is a partner for reactivation of ACO2 upon oxidative cluster inactivation.Fil: Mansilla, Santiago Nahuel. Universidad de la República; UruguayFil: Tórtora, Verónica. Universidad de la República; UruguayFil: Pignataro, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; ArgentinaFil: Sastre, Santiago. Universidad de la República; UruguayFil: Castro, Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; ArgentinaFil: Chiribao, María Laura. Universidad de la República; UruguayFil: Robello, Carlos. Universidad de la República; UruguayFil: Zeida Camacho, Ari Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional.; Argentina. Universidad de la República; UruguayFil: Santos, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de la República; UruguayFil: Castro, Laura. Universidad de la República; Urugua
The cytosolic tryparedoxin peroxidase from Trypanosoma cruzi induces a pro-inflammatory Th1 immune response in a peroxidatic cysteine-dependent manner
Trypanosoma cruzi cytosolic tryparedoxin peroxidase (c-TXNPx) is a 2-Cys peroxiredoxin (Prx) with an important role in detoxifying host cell oxidative molecules during parasite infection. c-TXNPx is a virulence factor, as its overexpression enhances parasite infectivity and resistance to exogenous oxidation. As Prxs from other organisms possess immunomodulatory properties, we studied the effects of c-TXNPx in the immune response and analysed whether the presence of the peroxidatic cysteine is necessary to mediate these properties. To this end, we used a recombinant c-TXNPx and a mutant version (c-TXNPxC52S) lacking the peroxidatic cysteine. We first analysed the oligomerization profile, oxidation state and peroxidase activity of both proteins by gel filtration, Western blot and enzymatic assay, respectively. To investigate their immunological properties, we analysed the phenotype and functional activity of macrophage and dendritic cells and the T-cell response by flow cytometry after injection into mice. Our results show that c-TXNPx, but not c-TXNPxC52S, induces the recruitment of IL-12/23p40-producing innate antigen-presenting cells and promotes a strong specific Th1 immune response. Finally, we studied the cellular and humoral immune response developed in the context of parasite natural infection and found that only wild-type c-TXNPx induces proliferation and high levels of IFN-γ secretion in PBMC from chronic patients without demonstrable cardiac manifestations. In conclusion, we demonstrate that c-TXNPx possesses pro-inflammatory properties that depend on the presence of peroxidatic cysteine that is essential for peroxidase activity and quaternary structure of the protein and could contribute to rational design of immune-based strategies against Chagas disease.Fil: López, Lucía. Universidad de la Republica; UruguayFil: Chiribao, María Laura. Instituto Pasteur de Montevideo; Uruguay. Universidad de la Republica; UruguayFil: Girard, Magalí Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Gomez, Karina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Carasi, Paula. Universidad de la Republica; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernandez, Marisa. Instituto Pasteur de Montevideo; Uruguay. Universidad de la República; UruguayFil: Hernandez, Yolanda. Instituto de Investigaciones En Ingeniería Genética y Biología Molecular, Buenos Aires; ArgentinaFil: Robello, Carlos. Instituto de Investigaciones En Ingeniería Genética y Biología Molecular, Buenos Aires; ArgentinaFil: Freire, Teresa. Universidad de la República; UruguayFil: Piñeyro, María Dolores. Universidad de la Republica; Urugua
New Insights into the Role of the <i>Trypanosoma cruzi</i> Aldo-Keto Reductase <i>Tc</i>AKR
Chagas disease is a zoonotic infectious disease caused by the protozoan parasite Trypanosoma cruzi. It is distributed worldwide, affecting around 7 million people; there is no effective treatment, and it constitutes a leading cause of disability and premature death in the Americas. Only two drugs are currently approved for the treatment, Benznidazole and Nifurtimox, and both have to be activated by reducing the nitro-group. The T. cruzi aldo-keto reductase (TcAKR) has been related to the metabolism of benznidazole. TcAKR has been extensively studied, being most efforts focused on characterizing its implication in trypanocidal drug metabolism; however, little is known regarding its biological role. Here, we found that TcAKR is confined, throughout the entire life cycle, into the parasite mitochondria providing new insights into its biological function. In particular, in epimastigotes, TcAKR is associated with the kinetoplast, which suggests additional roles of the protein. The upregulation of TcAKR, which does not affect TcOYE expression, was correlated with an increase in PGF2α, suggesting that this enzyme is related to PGF2α synthesis in T. cruzi. Structural analysis showed that TcAKR contains a catalytic tetrad conserved in the AKR superfamily. Finally, we found that TcAKR is also involved in Nfx metabolization
The cytosolic tryparedoxin peroxidase from Trypanosoma cruzi
Trypanosoma cruzi cytosolic tryparedoxin peroxidase (c‐TXNPx) is a 2‐Cys peroxiredoxin (Prx) with an important role in detoxifying host cell oxidative molecules during parasite infection. c‐TXNPx is a virulence factor, as its overexpression enhances parasite infectivity and resistance to exogenous oxidation. As Prxs from other organisms possess immunomodulatory properties, we studied the effects of c‐TXNPx in the immune response and analysed whether the presence of the peroxidatic cysteine is necessary to mediate these properties. To this end, we used a recombinant c‐TXNPx and a mutant version (c‐TXNPxC52S) lacking the peroxidatic cysteine. We first analysed the oligomerization profile, oxidation state and peroxidase activity of both proteins by gel filtration, Western blot and enzymatic assay, respectively. To investigate their immunological properties, we analysed the phenotype and functional activity of macrophage and dendritic cells and the T‐cell response by flow cytometry after injection into mice. Our results show that c‐TXNPx, but not c‐TXNPxC52S, induces the recruitment of IL‐12/23p40‐producing innate antigen‐presenting cells and promotes a strong specific Th1 immune response. Finally, we studied the cellular and humoral immune response developed in the context of parasite natural infection and found that only wild‐type c‐TXNPx induces proliferation and high levels of IFN‐γ secretion in PBMC from chronic patients without demonstrable cardiac manifestations. In conclusion, we demonstrate that c‐TXNPx possesses pro‐inflammatory properties that depend on the presence of peroxidatic cysteine that is essential for peroxidase activity and quaternary structure of the protein and could contribute to rational design of immune‐based strategies against Chagas disease