188 research outputs found

    Starch-Based Coatings for Preservation of Fruits and Vegetables

    Full text link
    [EN] Considerable research has focused on the control of the physiological activity of fruits and vegetables in postharvest conditions as well as microbial decay. The use of edible coatings (ECs) carrying active compounds (e.g., antimicrobials) represents an alternative preservation technology since they can modify the internal gas composition by creating a modified atmosphere through the regulation of the gas exchange (oxygen, carbon dioxide, volatiles) while also limiting water transfer. Of the edible polymers able to form coating films, starch exhibits several advantages, such as its ready availability, low cost and good filmogenic capacity, forming colourless and tasteless films with high oxygen barrier capacity. Nevertheless, starch films are highly water sensitive and exhibit limited water vapour barrier properties and mechanical resistance. Different compounds, such as plasticizers, surfactants, lipids or other polymers, have been incorporated to improve the functional properties of starch-based films/coatings. This paper reviews the starch-based ECs used to preserve the main properties of fruits and vegetables in postharvest conditions as well as the different factors affecting the coating efficiency, such as surface properties or incorporation of antifungal compounds. The great variability in the plant products requires specific studies to optimize the formulation of coating forming products.The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the projects and AGL2016-76699-R and RTA2015-00037-C02. Mayra Sapper thanks the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Comunitat Valenciana for the Santiago Grisolia grant GRISOLIA/2015/001.Sapper, MI.; Chiralt, A. (2018). Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings. 8(5). https://doi.org/10.3390/coatings8050152S85Palou, L., Valencia-Chamorro, S., & Pérez-Gago, M. (2015). Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings, 5(4), 962-986. doi:10.3390/coatings5040962Park, H. J. (1999). Development of advanced edible coatings for fruits. Trends in Food Science & Technology, 10(8), 254-260. doi:10.1016/s0924-2244(00)00003-0Karaca, H., Pérez-Gago, M. B., Taberner, V., & Palou, L. (2014). Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose–lipid composite edible coatings for plums. International Journal of Food Microbiology, 179, 72-79. doi:10.1016/j.ijfoodmicro.2014.03.027Fagundes, C., Palou, L., Monteiro, A. R., & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Scientia Horticulturae, 193, 249-257. doi:10.1016/j.scienta.2015.07.027Raybaudi-Massilia, R., Mosqueda-Melgar, J., Soliva-Fortuny, R., & Martín-Belloso, O. (2016). Combinational Edible Antimicrobial Films and Coatings. Antimicrobial Food Packaging, 633-646. doi:10.1016/b978-0-12-800723-5.00052-8Mariniello, L., Giosafatto, C. V. L., Di Pierro, P., Sorrentino, A., & Porta, R. (2010). Swelling, Mechanical, and Barrier Properties of Albedo-Based Films Prepared in the Presence of Phaseolin Cross-Linked or Not by Transglutaminase. Biomacromolecules, 11(9), 2394-2398. doi:10.1021/bm100566jKang, H.-J., Kim, S.-J., You, Y.-S., Lacroix, M., & Han, J. (2013). Inhibitory effect of soy protein coating formulations on walnut (Juglans regia L.) kernels against lipid oxidation. LWT - Food Science and Technology, 51(1), 393-396. doi:10.1016/j.lwt.2012.10.019Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2010). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849-875. doi:10.1007/s11947-010-0434-1Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095-1107. doi:10.1016/j.ijbiomac.2017.11.097Mehyar, G. F., Al-Qadiri, H. M., & Swanson, B. G. (2012). Edible Coatings and Retention of Potassium Sorbate on Apples, Tomatoes and Cucumbers to Improve Antifungal Activity During Refrigerated Storage. Journal of Food Processing and Preservation, 38(1), 175-182. doi:10.1111/j.1745-4549.2012.00762.xLuchese, C. L., Spada, J. C., & Tessaro, I. C. (2017). Starch content affects physicochemical properties of corn and cassava starch-based films. Industrial Crops and Products, 109, 619-626. doi:10.1016/j.indcrop.2017.09.020Cazón, P., Velazquez, G., Ramírez, J. A., & Vázquez, M. (2017). Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, 68, 136-148. doi:10.1016/j.foodhyd.2016.09.009Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering, 110(2), 208-213. doi:10.1016/j.jfoodeng.2011.05.034MILLER, K. S., UPADHYAYA, S. K., & KROCHTA, J. M. (2008). Permeability of d-Limonene in Whey Protein Films. Journal of Food Science, 63(2), 244-247. doi:10.1111/j.1365-2621.1998.tb15718.xFalguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. doi:10.1016/j.tifs.2011.02.004Lin, D., & Zhao, Y. (2007). Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Comprehensive Reviews in Food Science and Food Safety, 6(3), 60-75. doi:10.1111/j.1541-4337.2007.00018.xRojas-Graü, M. A., Tapia, M. S., Rodríguez, F. J., Carmona, A. J., & Martin-Belloso, O. (2007). Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids, 21(1), 118-127. doi:10.1016/j.foodhyd.2006.03.001Acevedo-Fani, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2017). Nanoemulsions as edible coatings. Current Opinion in Food Science, 15, 43-49. doi:10.1016/j.cofs.2017.06.002ZISMAN, W. A. (1964). Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. Contact Angle, Wettability, and Adhesion, 1-51. doi:10.1021/ba-1964-0043.ch001Dann, J. . (1970). Forces involved in the adhesive process. Journal of Colloid and Interface Science, 32(2), 302-320. doi:10.1016/0021-9797(70)90054-8Lima, Á. M., Cerqueira, M. A., Souza, B. W. S., Santos, E. C. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2010). New edible coatings composed of galactomannans and collagen blends to improve the postharvest quality of fruits – Influence on fruits gas transfer rate. Journal of Food Engineering, 97(1), 101-109. doi:10.1016/j.jfoodeng.2009.09.021Carneiro-da-Cunha, M. G., Cerqueira, M. A., Souza, B. W. S., Souza, M. P., Teixeira, J. A., & Vicente, A. A. (2009). Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. Journal of Food Engineering, 95(3), 379-385. doi:10.1016/j.jfoodeng.2009.05.020Cerqueira, M. A., Lima, Á. M., Teixeira, J. A., Moreira, R. A., & Vicente, A. A. (2009). Suitability of novel galactomannans as edible coatings for tropical fruits. Journal of Food Engineering, 94(3-4), 372-378. doi:10.1016/j.jfoodeng.2009.04.003Casariego, A., Souza, B. W. S., Vicente, A. A., Teixeira, J. A., Cruz, L., & Díaz, R. (2008). Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocolloids, 22(8), 1452-1459. doi:10.1016/j.foodhyd.2007.09.010Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63-70. doi:10.1016/j.postharvbio.2006.11.015Choi, W. Y., Park, H. J., Ahn, D. J., Lee, J., & Lee, C. Y. (2002). Wettability of Chitosan Coating Solution on’Fuji’ Apple Skin. Journal of Food Science, 67(7), 2668-2672. doi:10.1111/j.1365-2621.2002.tb08796.xHershko, V., & Nussinovitch, A. (1998). The Behavior of Hydrocolloid Coatings on Vegetative Materials. Biotechnology Progress, 14(5), 756-765. doi:10.1021/bp980075vHagenmaier, R. D., & Baker, R. A. (1993). Reduction in gas exchange of citrus fruit by wax coatings. Journal of Agricultural and Food Chemistry, 41(2), 283-287. doi:10.1021/jf00026a029Versino, F., Lopez, O. V., Garcia, M. A., & Zaritzky, N. E. (2016). Starch-based films and food coatings: An overview. Starch - Stärke, 68(11-12), 1026-1037. doi:10.1002/star.201600095Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143. doi:10.1016/j.foodhyd.2015.03.015Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762-769. doi:10.1016/j.foodres.2009.02.026Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075García, M. A., Martino, M. N., & Zaritzky, N. E. (1998). Plasticized Starch-Based Coatings To Improve Strawberry (Fragaria×Ananassa) Quality and Stability. Journal of Agricultural and Food Chemistry, 46(9), 3758-3767. doi:10.1021/jf980014cSaberi, B., Golding, J. B., Marques, J. R., Pristijono, P., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. (2018). Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’ oranges. Postharvest Biology and Technology, 137, 9-20. doi:10.1016/j.postharvbio.2017.11.003Cháfer, M., Sánchez-González, L., González-Martínez, C., & Chiralt, A. (2012). Fungal Decay and Shelf Life of Oranges Coated With Chitosan and Bergamot, Thyme, and Tea Tree Essential Oils. Journal of Food Science, 77(8), E182-E187. doi:10.1111/j.1750-3841.2012.02827.xNawab, A., Alam, F., & Hasnain, A. (2017). Mango kernel starch as a novel edible coating for enhancing shelf- life of tomato ( Solanum lycopersicum ) fruit. International Journal of Biological Macromolecules, 103, 581-586. doi:10.1016/j.ijbiomac.2017.05.057Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan– Aloe vera coating on postharvest quality of blueberry ( Vaccinium corymbosum ) fruit. Postharvest Biology and Technology, 116, 88-97. doi:10.1016/j.postharvbio.2016.01.011Sabbah, M., Di Pierro, P., Giosafatto, C., Esposito, M., Mariniello, L., Regalado-Gonzales, C., & Porta, R. (2017). Plasticizing Effects of Polyamines in Protein-Based Films. International Journal of Molecular Sciences, 18(5), 1026. doi:10.3390/ijms18051026Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109(3), 372-379. doi:10.1016/j.jfoodeng.2011.11.019Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006Sagnelli, D., Hooshmand, K., Kemmer, G., Kirkensgaard, J., Mortensen, K., Giosafatto, C., … Blennow, A. (2017). Cross-Linked Amylose Bio-Plastic: A Transgenic-Based Compostable Plastic Alternative. International Journal of Molecular Sciences, 18(10), 2075. doi:10.3390/ijms18102075Romani, V. P., Hernández, C. P., & Martins, V. G. (2018). Pink pepper phenolic compounds incorporation in starch/protein blends and its potential to inhibit apple browning. Food Packaging and Shelf Life, 15, 151-158. doi:10.1016/j.fpsl.2018.01.003Chiumarelli, M., Pereira, L. M., Ferrari, C. C., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2010). Cassava Starch Coating and Citric Acid to Preserve Quality Parameters of Fresh-Cut «Tommy Atkins» Mango. Journal of Food Science, 75(5), E297-E304. doi:10.1111/j.1750-3841.2010.01636.xOrtega-Toro, R., Collazo-Bigliardi, S., Roselló, J., Santamarina, P., & Chiralt, A. (2017). Antifungal starch-based edible films containing Aloe vera. Food Hydrocolloids, 72, 1-10. doi:10.1016/j.foodhyd.2017.05.023Botelho, L. N. S., Rocha, D. A., Braga, M. A., Silva, A., & de Abreu, C. M. P. (2016). Quality of guava cv. ‘Pedro Sato’ treated with cassava starch and cinnamon essential oil. Scientia Horticulturae, 209, 214-220. doi:10.1016/j.scienta.2016.06.012De Aquino, A. B., Blank, A. F., & de Aquino Santana, L. C. L. (2015). Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chemistry, 171, 108-116. doi:10.1016/j.foodchem.2014.08.077Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57-64. doi:10.1016/j.postharvbio.2015.05.015Razak, A. S., & Lazim, A. M. (2015). Starch-based edible film with gum arabic for fruits coating. doi:10.1063/1.4931299Das, D. K., Dutta, H., & Mahanta, C. L. (2013). Development of a rice starch-based coating with antioxidant and microbe-barrier properties and study of its effect on tomatoes stored at room temperature. LWT - Food Science and Technology, 50(1), 272-278. doi:10.1016/j.lwt.2012.05.018Garcia, L. C., Pereira, L. M., de Luca Sarantópoulos, C. I. G., & Hubinger, M. D. (2010). Selection of an Edible Starch Coating for Minimally Processed Strawberry. Food and Bioprocess Technology, 3(6), 834-842. doi:10.1007/s11947-009-0313-9Boubaker, H., Karim, H., El Hamdaoui, A., Msanda, F., Leach, D., Bombarda, I., … Ait Ben Aoumar, A. (2016). Chemical characterization and antifungal activities of four Thymus species essential oils against postharvest fungal pathogens of citrus. Industrial Crops and Products, 86, 95-101. doi:10.1016/j.indcrop.2016.03.036Junqueira-Gonçalves, M. P., Alarcón, E., & Niranjan, K. (2013). Development of antifungal packaging for berries extruded from recycled PET. Food Control, 33(2), 455-460. doi:10.1016/j.foodcont.2013.03.031Tesfay, S. Z., Magwaza, L. S., Mbili, N., & Mditshwa, A. (2017). Carboxyl methylcellulose (CMC) containing moringa plant extracts as new postharvest organic edible coating for Avocado ( Persea americana Mill.) fruit. Scientia Horticulturae, 226, 201-207. doi:10.1016/j.scienta.2017.08.047Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Engineering Reviews, 3(1), 1-16. doi:10.1007/s12393-010-9031-3Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32-41. doi:10.1016/j.postharvbio.2012.04.002Valencia-Chamorro, S. A., Pérez-Gago, M. B., Del Río, M. A., & Palou, L. (2010). Effect of Antifungal Hydroxypropyl Methylcellulose-Lipid Edible Composite Coatings on Penicillium Decay Development and Postharvest Quality of Cold-Stored «Ortanique» Mandarins. Journal of Food Science, 75(8), S418-S426. doi:10.1111/j.1750-3841.2010.01801.xAli, A., Noh, N. M., & Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packaging and Shelf Life, 3, 56-61. doi:10.1016/j.fpsl.2014.10.003Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology, 52(2), 137-145. doi:10.1016/j.postharvbio.2008.11.009Marín, A., Atarés, L., & Chiralt, A. (2017). Improving function of biocontrol agents incorporated in antifungal fruit coatings: a review. Biocontrol Science and Technology, 27(10), 1220-1241. doi:10.1080/09583157.2017.1390068Ruiz-Moyano, S., Martín, A., Villalobos, M. C., Calle, A., Serradilla, M. J., Córdoba, M. G., & Hernández, A. (2016). Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiology, 57, 45-53. doi:10.1016/j.fm.2016.01.003Marín, A., Cháfer, M., Atarés, L., Chiralt, A., Torres, R., Usall, J., & Teixidó, N. (2016). Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sake CPA-1 for control of Botrytis cinerea on grapes. Biological Control, 96, 108-119. doi:10.1016/j.biocontrol.2016.02.012Marín, A., Atarés, L., Cháfer, M., & Chiralt, A. (2017). Stability of biocontrol products carrying Candida sake CPA-1 in starch derivatives as a function of water activity. Biocontrol Science and Technology, 27(2), 268-287. doi:10.1080/09583157.2017.1279587Noshirvani, N., Ghanbarzadeh, B., Gardrat, C., Rezaei, M. R., Hashemi, M., Le Coz, C., & Coma, V. (2017). Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70, 36-45. doi:10.1016/j.foodhyd.2017.03.015Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003Acosta, S., Chiralt, A., Santamarina, P., Rosello, J., González-Martínez, C., & Cháfer, M. (2016). Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocolloids, 61, 233-240. doi:10.1016/j.foodhyd.2016.05.008Avila-Sosa, R., Palou, E., Jiménez Munguía, M. T., Nevárez-Moorillón, G. V., Navarro Cruz, A. R., & López-Malo, A. (2012). Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. International Journal of Food Microbiology, 153(1-2), 66-72. doi:10.1016/j.ijfoodmicro.2011.10.017Wang, Y., Li, Y., Xu, W., Zheng, X., Zhang, X., Abdelhai, M. H., … Zhang, H. (2018). Exploring the effect of β-glucan on the biocontrol activity of Cryptococcus podzolicus against postharvest decay of apples and the possible mechanisms involved. Biological Control, 121, 14-22. doi:10.1016/j.biocontrol.2018.02.001De Paiva, E., Serradilla, M. J., Ruiz-Moyano, S., Córdoba, M. G., Villalobos, M. C., Casquete, R., & Hernández, A. (2017). Combined effect of antagonistic yeast and modified atmosphere to control Penicillium expansum infection in sweet cherries cv. Ambrunés. International Journal of Food Microbiology, 241, 276-282. doi:10.1016/j.ijfoodmicro.2016.10.033Zhou, Y., Zhang, L., & Zeng, K. (2016). Efficacy of Pichia membranaefaciens combined with chitosan against Colletotrichum gloeosporioides in citrus fruits and possible modes of action. Biological Control, 96, 39-47. doi:10.1016/j.biocontrol.2016.02.001Gava, C. A. T., & Pinto, J. M. (2016). Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biological Control, 97, 13-20. doi:10.1016/j.biocontrol.2016.02.010Zeng, L., Yu, C., Fu, D., Lu, H., Zhu, R., Lu, L., … Yu, T. (2015). Improvement in the effectiveness of Cryptococcus laurentii to control postharvest blue mold of pear by its culture in β-glucan amended nutrient broth. Postharvest Biology and Technology, 104, 26-32. doi:10.1016/j.postharvbio.2015.03.005Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology, 47, 85-92. doi:10.1016/j.fm.2014.11.01

    A note on the Baker–Campbell–Hausdorff series in terms of right-nested commutators

    Get PDF
    We get compact expressions for the Baker–Campbell–Hausdorff series Z = log(eX eY ) in terms of right-nested commutators. The reduction in the number of terms originates from two facts: (i) we use as a starting point an explicit expression directly involving independent commutators and (ii) we derive a complete set of identities arising among right-nested commutators. The procedure allows us to obtain the series with fewer terms than when expressed in the classical Hall basis at least up to terms of grade 10

    Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application

    Full text link
    [EN] The necessity of producing innovative packaging systems has directed the attention of food industries towards the use of biodegradable polymers for developing new films able to protect foods and to extend their shelf-life, with lower environmental impact. In particular, edible films combining hydrophilic and hydrophobic ingredients could retard moisture loss, gas migration and ensure food integrity, reducing the necessity of using synthetic plastics. Alginate-based films obtained from emulsions of lemongrass essential oil (at 0.1% and 0.5%) in aqueous alginate solutions (1%), with Tween 80 as surfactant (0.3%), were obtained by casting and characterized as to microstructure and thermal behavior, as well as tensile, barrier and optical properties. Films were also crosslinked through spraying calcium chloride onto the film surface and the influence of oil emulsification and the crosslinking effect on the final film properties were evaluated. The film microstructure, analyzed through Field Emission Scanning Electron Microscopy (FESEM) revealed discontinuities in films containing essential oil associated with droplet flocculation and coalescence during drying, while calcium diffusion into the matrix was enhanced. The presence of essential oil reduced the film stiffness whereas calcium addition lowered the film¿s water solubility, increasing tensile strength and reducing the extensibility coherent with its crosslinking effect.This research was funded by the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R.Cofelice, M.; Cuomo, F.; Chiralt, A. (2019). Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application. Colloids and Interfaces. 3(3):1-15. https://doi.org/10.3390/colloids3030058S11533Rossi, M., Passeri, D., Sinibaldi, A., Angjellari, M., Tamburri, E., Sorbo, A., … Dini, L. (2017). Nanotechnology for Food Packaging and Food Quality Assessment. Advances in Food and Nutrition Research, 149-204. doi:10.1016/bs.afnr.2017.01.002Shit, S. C., & Shah, P. M. (2014). Edible Polymers: Challenges and Opportunities. Journal of Polymers, 2014, 1-13. doi:10.1155/2014/427259Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360-374. doi:10.1016/j.carbpol.2015.10.074Cofelice, M., Cuomo, F., & Lopez, F. (2018). Rheological Properties of Alginate–Essential Oil Nanodispersions. Colloids and Interfaces, 2(4), 48. doi:10.3390/colloids2040048Cuomo, F., Lopez, F., Ceglie, A., Maiuro, L., Miguel, M. G., & Lindman, B. (2012). pH-responsive liposome-templated polyelectrolyte nanocapsules. Soft Matter, 8(16), 4415. doi:10.1039/c2sm07388aCuomo, F., Cofelice, M., & Lopez, F. (2019). Rheological Characterization of Hydrogels from Alginate-Based Nanodispersion. Polymers, 11(2), 259. doi:10.3390/polym11020259Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. doi:10.1016/j.ijfoodmicro.2004.03.022Donsì, F., & Ferrari, G. (2016). Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, 233, 106-120. doi:10.1016/j.jbiotec.2016.07.005Liakos, I., Grumezescu, A., Holban, A., Florin, I., D’Autilia, F., Carzino, R., … Athanassiou, A. (2016). Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties. Pharmaceuticals, 9(3), 42. doi:10.3390/ph9030042Mbili, N. C., Opara, U. L., Lennox, C. L., & Vries, F. A. (2017). Citrus and lemongrass essential oils inhibit Botrytis cinerea on ‘Golden Delicious’, ‘Pink Lady’ and ‘Granny Smith’ apples. Journal of Plant Diseases and Protection, 124(5), 499-511. doi:10.1007/s41348-017-0121-9Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Mohd Adzahan, N. (2014). Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biology and Technology, 88, 1-7. doi:10.1016/j.postharvbio.2013.09.004Cofelice, M., Lopez, F., & Cuomo, F. (2019). Quality Control of Fresh-Cut Apples after Coating Application. Foods, 8(6), 189. doi:10.3390/foods8060189Valencia-Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979-987. doi:10.1002/pi.5143McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.xRao, J., & McClements, D. J. (2011). Formation of Flavor Oil Microemulsions, Nanoemulsions and Emulsions: Influence of Composition and Preparation Method. Journal of Agricultural and Food Chemistry, 59(9), 5026-5035. doi:10.1021/jf200094mAtarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001Soares, J. P., Santos, J. E., Chierice, G. O., & Cavalheiro, E. T. G. (2004). Thermal behavior of alginic acid and its sodium salt. Eclética Química, 29(2), 57-64. doi:10.1590/s0100-46702004000200009Hadi Razavi, S., Hashem Hosseini, M., Mohammad Ali Mousavi, S., Ahmad Shahidi Yasaghi, S., & Ghorbani Hasansaraei, A. (2008). Improving Antibacterial Activity of Edible Films Based on Chitosan by Incorporating Thyme and Clove Essential Oils and EDTA. Journal of Applied Sciences, 8(16), 2895-2900. doi:10.3923/jas.2008.2895.2900Riquelme, N., Herrera, M. L., & Matiacevich, S. (2017). Active films based on alginate containing lemongrass essential oil encapsulated: Effect of process and storage conditions. Food and Bioproducts Processing, 104, 94-103. doi:10.1016/j.fbp.2017.05.005Sapper, M., Wilcaso, P., Santamarina, M. P., Roselló, J., & Chiralt, A. (2018). Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control, 92, 505-515. doi:10.1016/j.foodcont.2018.05.004Pavlath, A. E., Gossett, C., Camirand, W., & Robertson, G. H. (1999). Ionomeric Films of Alginic Acid. Journal of Food Science, 64(1), 61-63. doi:10.1111/j.1365-2621.1999.tb09861.xOlivas, G. I., & Barbosa-Cánovas, G. V. (2008). Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT - Food Science and Technology, 41(2), 359-366. doi:10.1016/j.lwt.2007.02.015Siracusa, V., Romani, S., Gigli, M., Mannozzi, C., Cecchini, J., Tylewicz, U., & Lotti, N. (2018). Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin. Materials, 11(10), 1980. doi:10.3390/ma11101980Liling, G., Di, Z., Jiachao, X., Xin, G., Xiaoting, F., & Qing, Z. (2016). Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films. Carbohydrate Polymers, 136, 259-265. doi:10.1016/j.carbpol.2015.09.034Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26(1), 9-16. doi:10.1016/j.foodhyd.2011.03.015Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104(4), 649-656. doi:10.1016/j.jfoodeng.2011.02.005Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110(2), 232-239. doi:10.1016/j.jfoodeng.2011.05.023Pranoto, Y., Salokhe, V. M., & Rakshit, S. K. (2005). Physical and antibacte rial properties of alginate-based edible film incorporated with garlic oil. Food Research International, 38(3), 267-272. doi:10.1016/j.foodres.2004.04.009Costa, M. J., Marques, A. M., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2018). Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloids, 81, 442-448. doi:10.1016/j.foodhyd.2018.03.014Rhim, J.-W. (2004). Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Science and Technology, 37(3), 323-330. doi:10.1016/j.lwt.2003.09.008Baek, S.-K., Kim, S., & Song, K. (2018). Characterization of Ecklonia cava Alginate Films Containing Cinnamon Essential Oils. International Journal of Molecular Sciences, 19(11), 3545. doi:10.3390/ijms19113545Abdollahi, M., Rezaei, M., & Farzi, G. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering, 111(2), 343-350. doi:10.1016/j.jfoodeng.2012.02.012Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98(4), 443-452. doi:10.1016/j.jfoodeng.2010.01.02

    Exponential Perturbative Expansions and Coordinate Transformations

    Get PDF
    We propose a unified approach for different exponential perturbation techniques used in the treatment of time-dependent quantum mechanical problems, namely the Magnus expansion, the Floquet–Magnus expansion for periodic systems, the quantum averaging technique, and the Lie–Deprit perturbative algorithms. Even the standard perturbation theory fits in this framework. The approach is based on carrying out an appropriate change of coordinates (or picture) in each case, and it can be formulated for any time-dependent linear system of ordinary differential equations. All of the procedures (except the standard perturbation theory) lead to approximate solutions preserving by construction unitarity when applied to the time-dependent Schrödinger equation

    Essential oils as additives in biodegradable films and coatings for active food packaging

    Full text link
    [EN] Background: Petroleum derivate plastics represent a serious environmental problem, which is why alternative sustainable solutions must be found. To this aim, recent research has focused on the development of edible/biodegradable packaging for food products. The implementation of this novel packaging requires analyzing thoroughly the effect of the ingredients used on the most relevant properties of the material. Scope and approach: Essential oils represent an interesting ingredient for biodegradable food packaging, mainly due to their natural origin and their functional (antioxidant/antimicrobial) properties, allowing for obtaining active materials aiming to extend shelf-life and add value to the product. However, their inclusion in edible/biodegradable films for food packaging may imply some impact on several properties of the system (such as optical, tensile¿), affecting in turn the consumer acceptability. Before the increasing research on biodegradable materials for food packaging, and the growing interest on natural food additives, this paper aims to review the latest findings on how essential oils impact the most relevant properties of edible films and coatings, namely microstructural, physical (tensile, barrier, optical), antioxidant and antimicrobial. Key findings and conclusions: Essential oil incorporation affects the continuity of the polymer matrix, leading to physical changes depending on the specific polymer-oil components interactions. Generally, the film structure is weakened by the oil addition, whereas the water barrier properties are improved and the transparency is reduced. Essential oils may provide the films with antioxidant and/or antimicrobial properties. The oil composition and the specific interactions with the polymer determine its effectiveness as an active ingredient.The authors acknowledge the financial support from the Spanish Ministerio de Educacion y Ciencia through Project AGL2010-20694, from Universidad Politecnica de Valencia through Project PAID-06-11-2013 and from Conselleria de Empresa, Universidad y Ciencia (Project GV/2013/152).Atarés Huerta, LM.; Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology. 48:51-62. https://doi.org/10.1016/j.tifs.2015.12.001S51624

    Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications

    Full text link
    [EN] 13 wt.% of active compounds (carvacrol-CA, eugenol-EU) were obtained by spraying the active between PHBV layers and their subsequent adhesion. Release kinetics of CA and EU in food simulants of different polarity was analysed and the films antimicrobial activity was predicted, taking the minimal inhibitory concentration against some foodborne pathogens into account. Overall migration values were also determined. At equilibrium, an almost total release of both CA and EU occurred in 50% ethanol, about 20 and 50% of CA and EU, respectively, was delivered in the more aqueous simulants and 65 70% in fatty systems. The release rate increased when the polarity of aqueous simulants decreased, but it fell markedly in fatty systems. EU was released faster than CA in the less polar simulants, but more slowly in the more aqueous systems.The authors thank the Ministerio de Economía y Competitividad (Spain) for the financial support provided through Project AGL2013-42989-R and AGL2016-76699-R. Author Raquel Requena thanks the Ministry of Education, Culture and Sport (Spain) for the FPU (FPU13/03444) Grant.Requena-Peris, R.; Vargas, M.; Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal. 92:185-193. https://doi.org/10.1016/j.eurpolymj.2017.05.008S1851939

    The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes

    Full text link
    [EN] Lecithin-encapsulated carvacrol has been incorporated into poly (vinyl alcohol) (PVA) for the purpose of obtaining active films for food packaging application. The influence of molecular weight (Mw) and degree of hydrolysis (DH) of the polymer on its ability to retain carvacrol has been analysed, as well as the changes in the film microstructure, thermal behaviour, and functional properties as packaging material provoked by liposome incorporation into PVA matrices. The films were obtained by casting the PVA aqueous solutions where liposomes were incorporated until reaching 0 (non-loaded liposomes), 5 or 10 g carvacrol per 100 g polymer. The non-acetylated, high Mw polymer provided films with a better mechanical performance, but less CA retention and a more heterogeneous structure. In contrast, partially acetylated, low Mw PVA gave rise to more homogenous films with a higher carvacrol content. Lecithin enhanced the thermal stability of both kinds of PVA, but reduced the crystallinity degree of non-acetylated PVA films, although it did not affect this parameter in acetylated PVA when liposomes contained carvacrol. The mechanical and barrier properties of the films were modified by liposome incorporation in line with the induced changes in crystallinity and microstructure of the films.This research was funded by the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Doctoral grant of author Johana Andrade was funded by the Departamento de Narino-Colombia y la Fundacion CEIBAAndrade, J.; González Martínez, MC.; Chiralt, A. (2020). The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers. 12(2):1-18. https://doi.org/10.3390/polym12020497S118122Thong, C. C., Teo, D. C. L., & Ng, C. K. (2016). Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Construction and Building Materials, 107, 172-180. doi:10.1016/j.conbuildmat.2015.12.188Li, R., Wang, Y., Xu, J., Ahmed, S., & Liu, Y. (2019). Preparation and Characterization of Ultrasound Treated Polyvinyl Alcohol/Chitosan/DMC Antimicrobial Films. Coatings, 9(9), 582. doi:10.3390/coatings9090582Muppalaneni, srinath. (2013). Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. Journal of Developing Drugs, 02(03). doi:10.4172/2329-6631.1000112Cano, A., Fortunati, E., Cháfer, M., Kenny, J. M., Chiralt, A., & González-Martínez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84-93. doi:10.1016/j.foodhyd.2015.01.008Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia, 75(7-8), 801-804. doi:10.1016/j.fitote.2004.05.002Veldhuizen, E. J. A., Tjeerdsma-van Bokhoven, J. L. M., Zweijtzer, C., Burt, S. A., & Haagsman, H. P. (2006). Structural Requirements for the Antimicrobial Activity of Carvacrol. Journal of Agricultural and Food Chemistry, 54(5), 1874-1879. doi:10.1021/jf052564yGursul, S., Karabulut, I., & Durmaz, G. (2019). Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chemistry, 278, 805-810. doi:10.1016/j.foodchem.2018.11.134Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001Cofelice, Cuomo, & Chiralt. (2019). Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application. Colloids and Interfaces, 3(3), 58. doi:10.3390/colloids3030058Requena, R., Vargas, M., & Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal, 92, 185-193. doi:10.1016/j.eurpolymj.2017.05.008Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2), 246-253. doi:10.1016/j.jfoodeng.2011.02.028Sapper, M., Wilcaso, P., Santamarina, M. P., Roselló, J., & Chiralt, A. (2018). Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control, 92, 505-515. doi:10.1016/j.foodcont.2018.05.004Asbahani, A. E., Miladi, K., Badri, W., Sala, M., Addi, E. H. A., Casabianca, H., … Elaissari, A. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483(1-2), 220-243. doi:10.1016/j.ijpharm.2014.12.069Callegarin, F., Quezada Gallo, J.-A., Debeaufort, F., & Voilley, A. (1997). Lipids and biopackaging. Journal of the American Oil Chemists’ Society, 74(10), 1183-1192. doi:10.1007/s11746-997-0044-xCoimbra, M., Isacchi, B., van Bloois, L., Torano, J. S., Ket, A., Wu, X., … Schiffelers, R. M. (2011). Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. International Journal of Pharmaceutics, 416(2), 433-442. doi:10.1016/j.ijpharm.2011.01.056Sebaaly, C., Greige-Gerges, H., Stainmesse, S., Fessi, H., & Charcosset, C. (2016). Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Bioscience, 15, 1-10. doi:10.1016/j.fbio.2016.04.005Sebaaly, C., Charcosset, C., Stainmesse, S., Fessi, H., & Greige-Gerges, H. (2016). Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor. Carbohydrate Polymers, 138, 75-85. doi:10.1016/j.carbpol.2015.11.053Carvalho, I. T., Estevinho, B. N., & Santos, L. (2015). Application of microencapsulated essential oils in cosmetic and personal healthcare products - a review. International Journal of Cosmetic Science, 38(2), 109-119. doi:10.1111/ics.12232Hammoud, Z., Gharib, R., Fourmentin, S., Elaissari, A., & Greige-Gerges, H. (2019). New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. International Journal of Pharmaceutics, 561, 161-170. doi:10.1016/j.ijpharm.2019.02.022Valencia-Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979-987. doi:10.1002/pi.5143Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martínez-Bustos, F., & Grosso, C. R. F. (2011). Effect of surfactants on the functional properties of gelatin-based edible films. Journal of Food Engineering, 103(2), 129-136. doi:10.1016/j.jfoodeng.2010.10.007Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006Limpan, N., Prodpran, T., Benjakul, S., & Prasarpran, S. (2012). Influences of degree of hydrolysis and molecular weight of poly(vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocolloids, 29(1), 226-233. doi:10.1016/j.foodhyd.2012.03.007Reiner, G. N., Fraceto, L. F., Paula, E. de, Perillo, M. A., & García, D. A. (2013). Effects of Gabaergic Phenols on Phospholipid Bilayers as Evaluated by <sup>1</sup>H-NMR. Journal of Biomaterials and Nanobiotechnology, 04(03), 28-34. doi:10.4236/jbnb.2013.43a004Reiner, G. N., Perillo, M. A., & García, D. A. (2013). Effects of propofol and other GABAergic phenols on membrane molecular organization. Colloids and Surfaces B: Biointerfaces, 101, 61-67. doi:10.1016/j.colsurfb.2012.06.004Andrade, J., González-Martínez, C., & Chiralt, A. (2020). Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics. Polymer Degradation and Stability, 179, 109282. doi:10.1016/j.polymdegradstab.2020.109282Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT, 113, 108290. doi:10.1016/j.lwt.2019.108290Abral, H., Hartono, A., Hafizulhaq, F., Handayani, D., Sugiarti, E., & Pradipta, O. (2019). Characterization of PVA/cassava starch biocomposites fabricated with and without sonication using bacterial cellulose fiber loadings. Carbohydrate Polymers, 206, 593-601. doi:10.1016/j.carbpol.2018.11.054Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. doi:10.1016/j.foodhyd.2018.02.028Buendía−Moreno, L., Sánchez−Martínez, M. J., Antolinos, V., Ros−Chumillas, M., Navarro−Segura, L., Soto−Jover, S., … López−Gómez, A. (2020). Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or halloysite nanotubes. A case study for fresh tomato storage. Food Control, 107, 106763. doi:10.1016/j.foodcont.2019.106763Neira, L. M., Martucci, J. F., Stejskal, N., & Ruseckaite, R. A. (2019). Time-dependent evolution of properties of fish gelatin edible films enriched with carvacrol during storage. Food Hydrocolloids, 94, 304-310. doi:10.1016/j.foodhyd.2019.03.020Trindade, G. G. G., Thrivikraman, G., Menezes, P. P., França, C. M., Lima, B. S., Carvalho, Y. M. B. G., … Araújo, A. A. S. (2019). Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food and Chemical Toxicology, 125, 198-209. doi:10.1016/j.fct.2019.01.003Taladrid, D., Marín, D., Alemán, A., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Research International, 100, 541-550. doi:10.1016/j.foodres.2017.07.052Pinilla, C. M. B., Thys, R. C. S., & Brandelli, A. (2019). Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread. International Journal of Food Microbiology, 293, 72-78. doi:10.1016/j.ijfoodmicro.2019.01.006Cristancho, D., Zhou, Y., Cooper, R., Huitink, D., Aksoy, F., Liu, Z., … Seminario, J. M. (2013). Degradation of polyvinyl alcohol under mechanothermal stretching. Journal of Molecular Modeling, 19(8), 3245-3253. doi:10.1007/s00894-013-1828-6Cai, H., Dave, V., Gross, R. A., & McCarthy, S. P. (1996). Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 34(16), 2701-2708. doi:10.1002/(sici)1099-0488(19961130)34:163.0.co;2-sMcHugh, T. H., & Krochta, J. M. (1994). Sorbitol- vs Glycerol-Plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation. Journal of Agricultural and Food Chemistry, 42(4), 841-845. doi:10.1021/jf00040a001Restrepo, I., Medina, C., Meruane, V., Akbari-Fakhrabadi, A., Flores, P., & Rodríguez-Llamazares, S. (2018). The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends. Polímeros, 28(2), 169-177. doi:10.1590/0104-1428.03117Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384-391. doi:10.1016/j.jfoodeng.2010.03.004Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193-198. doi:10.1016/j.foodchem.2009.10.006Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., & Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159-169. doi:10.1016/j.foodhyd.2013.05.00

    Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants

    Full text link
    [EN] Wettability of coating-forming systems (CFS) based on starch-gellan (80:20) blends, containing or not, emulsified/lecithin-encapsulated thyme essential oil (EO), was analysed in apple, tomato and persimmon fruit. Different concentrations (0-10(5) mg/L) of Tween 85 were incorporated into the CFS in order to know its potentially beneficial effect on the coating spreadability. These fruit skins exhibited high values of the surface tension dispersive component, while being low-energy surfaces (21-29 mN/m). Values of contact angle and surface tension of the starch-gellan solutions were positively affected by the addition of Tween 85 at 5.10(4) mg/L. However, it exerted a negative effect when the CFS contained emulsified or lecithin-encapsulated thyme essential oil. Likewise, wettability of starch-gellan coatings was notably improved with Tween 85 at 5.10(4) mg/L, whereas formulations containing emulsified or encapsulated EO did not require surfactant to improve their already good spreadability.The authors would like to thank the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Author Mayra Sapper thanks the Conselleria de Educacion, Investigacion, Cultura y Deporte de la Comunitat Valenciana for the Santiago Grisolfa grant GRISOLIA/2015/001.Sapper, MI.; Bonet, M.; Chiralt, A. (2019). Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. LWT - Food Science and Technology. 116:1-8. https://doi.org/10.1016/j.lwt.2019.108574S1811

    Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol

    Full text link
    [EN] Bilayer films using polyester blends (P) and starch (S) were obtained and characterized, incorporating carvacrol as active compound. Carvacrol was incorporated by spraying it between melt blended and compression moulded sheets or through its incorporation into the chloroform P solution used to obtain P cast films. Different PLA-PHBV ratios (75:25 and 65:35) were tested, with and without 15¿wt% of PEG1000, whereas the 75:25 ratio with PEG was only used for cast sheets, based on its better overall properties. Mono and bilayers were characterized as to their tensile and water vapour barrier properties and thermal behaviour. Release kinetics of carvacrol in different food simulants and in in vitro antibacterial activity against Listeria innocua and Escherichia coli were also analysed. Incorporating carvacrol by spraying it between the polyester and starch sheets was not effective at retaining the compound in the bilayers. However, the incorporation of carvacrol into cast P films, and the subsequent formation of bilayers with the S sheets, was highly effective at providing practically total carvacrol retention. These active bilayers exhibited highly improved tensile and water vapour barrier capacity with respect to the S monolayer (87% reduction in WVP, 840% increase in elastic modulus) and inhibited the growth of L. innocua and E. coli from both P or S contact sides of bilayers, depending on the internal diffusion of carvacrol through the bilayer and its adequate release of the compound into the culture medium.Requena-Peris, R.; Vargas, M.; Chiralt, A. (2018). Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocolloids. 83:118-133. https://doi.org/10.1016/j.foodhyd.2018.04.045S1181338

    Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay

    Full text link
    [EN] The thiazolyl blue tetrazolium bromide (MTT) assay was used to study the potential interactions between several active compounds from plant essential oils (carvacrol, eugenol, cinnamaldehyde, thymol and eucalyptol) when used as antibacterial agents against Escherichia coli and Listeria innocua. The minimum inhibitory concentration (MIC) of each active compound and the fractional inhibitory concentration (FIC) index for the binary combinations of essential oil compounds were determined. According to FIC index values, some of the compound binary combinations showed an additive effect, but others, such as carvacrol-eugenol and carvacrol-cinnamaldehyde exhibited a synergistic effect against L. innocua and E. coli, which was affected by the compound ratios. Some eugenol-cinnamaldehyde ratios exhibit an antagonistic effect against E. coli, but a synergistic effect against L. innocua. The most remarkable synergistic effect was observed for carvacrol-cinnamaldehyde blends for both E. colt and L. innocua, but using different compound ratios (1:0.1 and 0.5:4 respectively for each bacteria).The authors thank the Ministerio de Economia y Competitividad (Spain) for the financial support provided through Project AGL2016-76699-R. Author Raquel Requena thanks the Ministry of Education, Culture and Sport (Spain) for the FPU (FPU13/03444) Grant.Requena-Peris, R.; Vargas, M.; Chiralt, A. (2019). Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay. LWT - Food Science and Technology. 101:183-190. https://doi.org/10.1016/j.lwt.2018.10.093S18319010
    corecore